158
M.C. de Koning et al. / European Journal of Medicinal Chemistry 157 (2018) 151e160
(dd, J ¼ 8.7, 2.7 Hz, 1H), 7.11 (d, J ¼ 8.7 Hz, 1H), 4.59e4.16 (m, 2H),
3.32e3.08 (m, 2H), 2.84 (s, 3H), 1.85 (dd, J ¼ 8.7, 6.4 Hz, 2H),
1.48e1.31 (m, 6H), 1.01e0.87 (m, 3H). 13C NMR (101 MHz,
1H), 5.49 (s, 2H). 13C NMR (101 MHz, Methanol-d4)
d 156.44,135.48,
125.33 (d, J ¼ 8.5 Hz), 122.10, 119.61, 117.15, 116.73, 116.40, 116.01,
55.29. Overall yield: 6%. HRMS [MþH]þ calc (found): 190.09749
(190.0981).
Methanol-d4)
d 156.97, 127.15, 126.12, 122.20, 117.82, 116.40, 56.38,
54.05, 39.57, 30.97, 25.89, 23.86, 12.87. Overall yield: 64%. HRMS
2r: 1H NMR (400 MHz, Methanol-d4)
d
7.72 (d, J ¼ 2.3 Hz, 1H),
[MþH]þ calc (found): 237.19614 (237.1968).
7.57 (d, J ¼ 1.9 Hz, 1H), 7.36 (dd, J ¼ 8.7, 2.6 Hz, 1H), 7.09 (d,
2h: 1H NMR (400 MHz, Methanol-d4)
d
7.27 (d, J ¼ 2.6 Hz, 1H),
J ¼ 2.6 Hz, 1H), 6.80 (d, J ¼ 8.6 Hz,1H), 6.35 (t, J ¼ 2.2 Hz,1H), 5.34 (s,
7.21 (dd, J ¼ 8.6, 2.6 Hz,1H), 6.68 (d, J ¼ 8.6 Hz,1H), 3.80 (s, 2H), 2.67
2H), 2.07 (s, 3H).13C NMR (101 MHz, Methanol-d4)
d 169.98, 151.87,
(q, J ¼ 7.2 Hz, 4H), 2.10 (s, 3H), 1.14 (t, J ¼ 7.2 Hz, 6H). 13C NMR
138.31, 130.71, 130.40, 122.97, 121.95, 121.86, 114.90, 105.35, 50.27,
(101 MHz, Methanol-d4)
d
173.78, 172.02, 157.01, 127.00, 126.02,
22.03. 3r: 1H NMR (400 MHz, Methanol-d4)
d
8.30 (dd, J ¼ 18.1,
122.21, 117.93, 116.43, 50.64, 19.34, 7.74. 3h: 1H NMR (400 MHz,
Methanol-d4)
7.60 (d, J ¼ 2.7 Hz, 1H), 7.43 (dd, J ¼ 8.7, 2.7 Hz, 1H),
2.7 Hz, 2H), 7.45 (d, J ¼ 2.7 Hz, 1H), 7.36 (dd, J ¼ 8.7, 2.8 Hz, 1H), 7.04
d
(d, J ¼ 8.7 Hz, 1H), 6.80 (t, J ¼ 2.8 Hz, 1H), 5.67 (s, 2H). 13C NMR
7.12 (d, J ¼ 8.7 Hz, 1H), 4.41 (s, 2H), 3.34e3.20 (m, 4H), 1.42 (t,
(101 MHz, Methanol-d4) d 156.44, 135.85, 135.18, 125.44, 124.97,
J ¼ 7.3 Hz, 6H). 13C NMR (101 MHz, Methanol-d4)
d
157.01, 127.16,
121.94, 121.12, 116.32, 107.72, 50.28. Overall yield: 6%. LC-MS
126.09, 122.14, 117.86, 116.45, 50.50, 7.84. HRMS [MþH]þ calc
[MþH]þ calc (found): 190.09749 (190.1).
(found): 195.14919 (195.1494). Overall yield: 21%.
4: 61.1 mg (231
m
mol) of 3l$2HCl (MW ¼ 265 g/mol) was dis-
2i: 1H NMR (400 MHz, Methanol-d4)
d
7.26 (d, J ¼ 2.4 Hz, 1H),
solved in 850
added as a base. 150
monitoring of the progress of the reaction by NMR. The mixture
was stirred until 3l was dissolved. Finally, 56 l (259.2 mol) par-
ml water, 66
ml (521.5 mmol) N-ethylmorpholine was
7.21 (dd, J ¼ 8.6, 2.6 Hz, 1H), 6.68 (d, J ¼ 8.6 Hz, 1H), 3.76 (s, 2H),
ml of deuterium oxide was added to enable
2.56e2.45 (m, 4H), 2.10 (s, 3H), 1.67e1.52 (m, 4H), 0.92 (t, J ¼ 7.4 Hz,
6H). 13C NMR (101 MHz, Methanol-d4)
d
169.84, 154.43, 130.03,
m
m
122.46, 121.18, 120.81, 115.24, 57.48, 55.19, 22.19, 19.24, 10.74. 3i: 1H
NMR (400 MHz, Methanol-d4)
aoxon was added and the mixture was transferred to an NMR tube.
The mixture was allowed to react measuring 31P and 1H NMR
spectra at regular intervals. After 4 days 31P NMR indicated com-
plete consumption of PXE and the formation of approximately 60%
of the adduct (based on 31P-content). The product was purified
using automated preparative HPLC, after which the sample was
isolated by lyophilization. Yield: 13.3%. 1H NMR (400 MHz, D2O)
d
7.57 (d, J ¼ 2.7 Hz, 1H), 7.41 (dd,
J ¼ 8.8, 2.7 Hz, 1H), 7.10 (d, J ¼ 8.7 Hz, 1H), 4.43 (s, 2H), 3.29e3.04
(m, 4H), 1.95e1.75 (m, 4H), 1.02 (t, J ¼ 7.3 Hz, 6H). 13C NMR
(101 MHz, Methanol-d4)
d 157.05, 127.14, 126.10, 122.16, 117.89,
116.41, 54.68, 51.50, 16.80, 9.83. Overall yield: 75%. HRMS [MþH]þ
calc (found): 223.18049 (223.1810).
2l: 1H NMR (400 MHz, Methanol-d4)
d
7.29e7.20 (m, 2H), 6.70
(d, J ¼ 8.5 Hz, 1H), 3.73 (s, 2H), 2.62e2.53 (m, 4H), 2.09 (s, 3H),
1.86e1.74 (m, 4H). 13C NMR (101 MHz, Methanol-d4)
169.79,
154.27, 129.93, 122.73, 121.12, 120.88, 115.21, 57.41, 53.03, 23.21,
22.39. 3l: 1H NMR (400 MHz, Methanol-d4)
7.41 (d, J ¼ 2.7 Hz,1H),
7.26 (dd, J ¼ 8.7, 2.7 Hz, 1H), 7.02 (d, J ¼ 8.7 Hz, 1H), 4.41 (s, 2H), 3.41
(s, 4H), 2.13 (s, 4H). 13C NMR (101 MHz, Methanol-d4)
155.12,
d
7.57e7.25 (m, 3H), 4.37 (s, 2H), 4.26 (h, J ¼ 7.7 Hz, 4H), 3.50 (s, 2H),
3.15 (s, 2H), 2.11 (s, 2H), 1.94 (s, 2H), 1.28 (t, J ¼ 7.1 Hz, 6H). 13C NMR
d
(101 MHz, D2O) d 146.47, 133.68, 124.55, 124.19, 123.19, 121.77,
117.81, 114.91, 66.93, 54.13, 51.95, 22.34, 15.29. 31P NMR (162 MHz,
d
D2O)
d
ꢂ5.80. HRMS [MþH]þ calc (found): 329.1625 (329.1635).
d
125.67, 125.15, 124.47, 118.44, 116.30, 53.66, 52.82, 22.54. Overall
4.2. Inhibition of human AChE by non-oximes
yield: 59%. HRMS [MþH]þ calc (found): 193.13354 (193.1333).
2m: 1H NMR (400 MHz, Methanol-d4)
d
7.25 (d, J ¼ 2.5 Hz, 1H),
20
were added to tempered cuvettes (37 ꢀC) containing 1.820
phosphate buffer (0.1 M, pH 7.4), 100 l DTNB (0.5 mM) and 10
native human AChE. After addition of 50
volume 2000 l) AChE activity was measured for 1 min and referred
ml non-oxime compounds (1e1.000 mM final concentration)
7.21 (dd, J ¼ 8.6, 2.6 Hz,1H), 6.69 (d, J ¼ 8.6 Hz,1H), 3.68 (s, 2H), 3.37
(s, 3H), 2.55 (m, 4H), 1.66 (m, J ¼ 5.6 Hz, 4H), 1.54 (m, J ¼ 6.8 Hz, 2H).
m
m
l
l
m
13C NMR (101 MHz, Methanol-d4)
d
169.90, 154.36, 129.96, 121.70,
ml ATCh (0.71 mM) (final
121.44, 120.88, 115.17, 60.96, 53.39, 25.56, 23.61, 22.07. 3m: 1H NMR
(400 MHz, Methanol-d4)
m
d
7.59 (d, J ¼ 2.7 Hz, 1H), 7.39 (dd, J ¼ 8.7,
to control activity. The IC50 values were calculated from semi-
logarithmic plots of the non-oxime compound concentration
versus the % AChE activity.
2.7 Hz, 1H), 7.09 (d, J ¼ 8.7 Hz, 1H), 4.36 (s, 2H), 3.50 (dd, J ¼ 12.1,
3.7 Hz, 2H), 3.08 (td, J ¼ 12.2, 3.5 Hz, 2H), 2.01e1.77 (m, 5H),
1.63e1.49 (m, 1H). 13C NMR (101 MHz, Methanol-d4)
d 157.30,
127.55, 126.06, 121.96, 117.24, 116.48, 54.37, 52.77, 22.51, 21.21.
Overall yield: 29%. HRMS [MþH]þ calc (found): 207.14919
(207.1493).
4.3. Determination of the inhibition type of non-oxime compounds
2n: 1H NMR (400 MHz, Methanol-d4)
d
7.28 (d, J ¼ 2.6 Hz, 1H),
Seven ATCh concentrations (50e1000
were used to determine the inhibition type of 3h (ADOC) and 3l
with human AChE. 50
l ATCh was added to cuvettes (37 ꢀC) filled
with 3000 l phosphate buffer (0.1 M, pH 7.4), 100 DTNB
(0.3 mM), 10 l human native AChE and 5 l 3h (ADOC) (0, 20, 40,
60, 80, 100 M) or 3l (0, 2.5, 5, 10, 15 M) and AChE activity was
measured for 1 min. AChE activity (v (mA/min)) was plotted against
ATCh concentration ([S] ( M)) and analyzed by non-linear regres-
mM final concentration)
7.23 (dd, J ¼ 8.6, 2.6 Hz, 1H), 6.70 (d, J ¼ 8.6 Hz, 1H), 3.72 (t,
J ¼ 4.7 Hz, 4H), 3.67 (s, 2H), 2.54 (t, J ¼ 4.6 Hz, 4H), 2.08 (s, 3H). 13
C
m
NMR (101 MHz, Methanol-d4)
d
171.34, 155.14, 131.65, 123.32,
m
ml
122.74, 122.54, 116.61, 67.86, 61.60, 54.09, 23.49. 3n: 1H NMR
(400 MHz, Methanol-d4)
7.60 (d, J ¼ 2.8 Hz, 1H), 7.39 (dd, J ¼ 8.8,
2.8 Hz, 1H), 7.10 (d, J ¼ 8.7 Hz, 1H), 4.43 (s, 2H), 4.15e3.80 (m, 4H),
3.50e3.20 (m, 4H). 13C NMR (101 MHz, Methanol-d4)
157.30,
m
m
d
m
m
d
m
127.62, 126.21, 122.18, 116.53, 63.37, 54.69, 51.60. Overall yield: 20%.
sion analysis (Michaelis-Menten plot). Double reciprocal
Lineweaver-Burk plots were identified by plotting 1/v against 1/[S]
and performed by linear regression analysis. Two secondary graphs
were derived from the Lineweaver-Burk plot: Slopes or ordinate
intercepts were plotted versus non-oxime compound concentra-
tions and analyzed by linear regression analysis. The dissociation
constants kic (slopes against non-oxime concentration) and kiu
(ordinate intercepts against non-oxime concentration) were
determined from the x-intercepts [38].
HRMS [MþH]þ calc (found): 209.12854 (209.1285).
2q: 1H NMR (400 MHz, Methanol-d4)
d 9.01e8.95 (m, 1H),
7.66e7.59 (m, 2H), 7.55e7.49 (m, 1H), 7.30 (dd, 1H), 6.85 (d,
J ¼ 8.7 Hz, 1H), 5.38 (s, 2H), 2.12 (s, 3H). 13C NMR (101 MHz,
Methanol-d4)
d 170.01, 151.97, 137.18, 130.46, 127.18, 123.12, 122.05,
119.60, 114.88, 61.52, 45.54, 22.05. 3q: 1H NMR (400 MHz,
Methanol-d4)
9.10 (d, J ¼ 1.6 Hz, 1H), 7.68 (t, J ¼ 1.7 Hz, 1H),
7.59e7.54 (m, 2H), 7.36 (dd, J ¼ 8.7, 2.7 Hz, 1H), 7.05 (d, J ¼ 8.7 Hz,
d