A General and Efficient Strategy for
7-Aryloctahydroindole and
cis-3a-Aryloctahydroindole Alkaloids:
Total Syntheses of (()-γ-Lycorane and
(()-Crinane
Shuanhu Gao, Yong Qiang Tu,* Zhenlei Song,
Aixia Wang, Xiaohui Fan, and Yijun Jiang
State Key Laboratory of Applied Organic Chemistry and
Department of Chemistry, Lanzhou University, Lanzhou
730000, P. R. China
Received April 15, 2005
FIGURE 1. Representative lycorine-type and crinine-type
alkloids.
alkaloids have been attracting considerable attention
from organic chemists over the years. Because establish-
ment of the five-membered nitrogen-containing ring of
the above two aryl substituted octahydroindole nuclei is
critical, a number of synthetic efforts have emerged to
address appropriate “C-C-NH2” synthons. Up to now,
Mitsunobu reaction,2b,5b Wadsworth-Emmons reaction,2e
and nucleophilic displacement2d have been intermolecu-
larly utilized to create the “C-C-NH2” segment. Despite
the above strategies for the different “C-C-NH2” syn-
thons, there have been no reports on the application of
the nitroethylene6 as a key building block for the con-
struction of the above two types of alkaloids.
In connection with our previous investigations, we have
recently reported the total syntheses of (()-crinane and
its analogue.7 This achievement encouraged us to develop
other kinds of conceptually new strategies, especially the
more general and efficient, for these two types and other
more complex alkaloids. Herein, we wish to present a
highly concise tactic for both of the above two aryl
A general and efficient approach to both 7-aryloctahydroin-
dole and cis-3a-aryloctahydroindole alkaloids has been
developed. The key step involves Michael additions of the
corresponding kinetics and thermodynamics lithium enolates
of ketone 9 to the versatile building blocks: nitroethylene
10. Two representative members, (()-γ-lycorane and (()-
crinane, have been synthesized in 22 and 36% overall yields,
respectively.
The lycorine-type and crinine-type alkaloids, which
possess 7-aryloctahydroindole and cis-3a-aryloctahydroin-
dole nuclei, respectively (as shown in Figure 1), constitute
a large class of structurally diverse natural products
existing widely in the Amaryllidaceae alkaloids,1 such as
γ-lycorane (1),2 lycorine (2),3 and crinine (4),4 as well as
some nonnatural products, such as crinane (3).5 Due to
their intriguing structures, the wide range of biological
activities, and ability to be a proving ground for new
strategy and synthetic methods, these two groups of
(3) For some previous syntheses of lycorine, see: (a) Tsuda, Y.; Sano,
T.; Taga, J.; Isobe, K.; Toda, J.; Irie, H.; Tanaka, H.; Takagi, S.; Yamaki,
M.; Murata, M. J. Chem. Soc., Chem. Commun. 1975, 933. (b)
Umezawa, B.; Hoshino, O.; Sawaki, S.; Sashida, H.; Mori, K. Hetero-
cycles 1979, 12, 1475. (c) Sano, T.; Kashiwaba, N.; Tada, J.; Tsuda, Y.;
Irie, H. Heterocycles 1980, 32, 1097. (d) Martin, S. F.; Tu, C.; Kimura,
M.; Simonsen, S. H. J. Org. Chem. 1982, 47, 3634. (e) Boeckman, R.
K., Jr.; Goldstein, S. W.; Walters, M. A. J. Am. Chem. Soc. 1988, 110,
8250. (f) Umezawa, B.; Hoshino, O.; Sawaki, H.; Mori, K.; Hamada,
Y.; Kotera, K.; Iitaka, Y. Tetrahedron 1984, 40, 1783. (g) Schultz, A.
G.; Holoboski, M. A.; Smyth, M. S. J. Am. Chem. Soc. 1996, 118, 6210.
(h) Hoshino, O.; Ishizaki, M.; Kamei, K.; Taguchi, M.; Nagao, T.;
Iwaoka, K.; Sawai, S.; Umezawa, B.; Iitaka, Y. J. Chem. Soc., Perkin
Trans. 1 1996, 571. (i) Martin, S. F.; Tu, C. J. Org. Chem. 1981, 46,
3763. (j) Schultz, A. G.; Holoboski, M. A.; Smyth, M. S. J. Am. Chem.
Soc. 1993, 115, 7904.
(4) For some previous syntheses of crinine, see: (a) Muxfeldt, H.;
Schneider, R. S.; Mooberry, J. B. J. Am. Chem. Soc. 1966, 88, 3670.
(b) Whitlock, H. W.; Smith, G. L. J. Am. Chem. Soc. 1967, 89, 3600.
(c). Martin, S. F.; Campbell, C. L. J. Org. Chem. 1988, 53, 3184. (d)
Pearson, W. H.; Lovering, F. E. J. Org. Chem. 1998, 63, 3607.
(5) For some previous syntheses of crinane, see: (a) Padwa, A.;
Brodney, M. A.; Dimitroff, M.; Liu, B.; Wu, T. H. J. Org. Chem. 2001,
66, 3119. (b) Schkeryantz, J. M.; Pearson, W. H. Tetrahedron 1996,
52, 3107. (c) Keck, G. E.; Webb, R. R. J. Am. Chem. Soc. 1981, 103,
3173. (d) Song, Z.-L.; Wang, B.-M.; Tu, Y.-Q.; Fan, C.-A.; Zhang S.-Y.
Org. Lett. 2003, 5, 2319.
* Corresponding author. Phone number: +86-931-8912410. Fax:
+86-931-8912582.
(1) For recent reviews of Amaryllidacea alkaloids, see: (a) Martin,
S. F. In The Alkaloids: Chemistry and Physiology; Brossi, A., Ed.;
Academic Press: New York, 1987; Vol. 30, p 251. (b) Hoshino, O. The
Alkaloids: Chemistry and Physiology; Brossi, A., Ed.; Academic
Press: New York, 1998; Vol. 51, p 323. (c) Lewis, J. R. Nat. Prod. Rep.
1998, 15, 107. (d) Jin, Z.; Li, Z. G.; Huang, R. Q. Nat. Prod. Rep. 2002,
19, 454.
(2) Recent synthesis of γ-lycorane: (a) Yoshizaki, H.; Satoh, H.; Sato,
Y.; Nukui, S.; Shibasaki, M.; Mori, M. J. Org. Chem. 1995, 60, 2016.
(b) Ba¨ckvall, J. E.; Andersson, P. G.; Stone, G. B.; Gogoll, A. J. Org.
Chem. 1991, 56, 2988. (c) Padwa, A.; Brodney, M. A.; Lynch, S. M. J.
Org. Chem. 2001, 66, 1716. (d) Pearson, W. H.; Schkeryantz, J. M. J.
Org. Chem. 1992, 57, 6783. (e) Banwell, M. G.; Wu, A. W. J. Chem.
Soc., Perkin Trans. 1 1994, 2671. (f) Yasuhara, T.; Nishimura, K.;
Yamashita, M.; Fukuyama, N.; Yamada, K.-i.; Muraoka, O.; Tomioka,
K. Org. Lett. 2003, 5, 1123.
10.1021/jo0507690 CCC: $30.25 © 2005 American Chemical Society
Published on Web 07/07/2005
J. Org. Chem. 2005, 70, 6523-6525
6523