3582
B.-S. Jeong et al. / Bioorg. Med. Chem. Lett. 15 (2005) 3580–3583
Upon irradiation of the H(b) in 13, nuclear Overhauser
effect (NOE) was observed to be 1.4% for the H(c), while
NOE in the diastereomer 130 prepared from 90 was 5.6%.
These results nicely support the fact that H(b) and H(c)
in 13 have a trans-relationship (Fig. 2).
values were colorimetrically measured by SRB (CPAE
cell) or MTT (EL-4, P388) methods. The biological data
are shown in Table 1. The prepared novel cyclopentane
analogues of fumagillol showed endothelial cell prolifer-
ation inhibitory activity at lM concentration. However,
their activities turned out to be lower than those of fum-
agillin derivatives.
Although several methods for the selective methylation
of C(c)-alcohol in 14, which was prepared from 13 by
treatment with PPTS in methanol, with/without protec-
tion of the other hydroxyl group were attempted, we
failed to obtain the desired mono-methoxy product in
good yield. Lactonization turned out to be the best pro-
tection to give a 1:1 mixture of separable regioisomers
(15 and 150), with the undesired isomer 150 being recy-
cled. Then, methylation of the hydroxyl group in 15
was successfully performed with Ag2O/MeI reaction
system to give 16 in 80% yield. Removal of the benzyl-
protecting group in 16 along with the concurrent reduc-
tion of the lactone was accomplished using excess
lithium in liquid ammonia to produce the triol 17 in
62% yield. Selective mono-tosylation of the primary hy-
droxyl group in 17, followed by treatment with mild
base, afforded the spiro-epoxy compound 18 in 72%
yield for the two steps. Epoxidation of the olefin in 18
with m-CPBA produced a 3:1 mixture of inseparable
diastereomers 19 in 94% yield.
In summary, total synthesis of a novel cyclopentane
analogue of fumagillol was carried out using glycolate
Claisen rearrangement and intramolecular ester eno-
late alkylation as key steps. Studies on the struc-
ture–activity relationship of fumagillol analogues are
underway.
Acknowledgments
This work was supported by Grants (01-PJ1-PG4-
01PT01-0004 and 00-PJ2-PG-1-CD02-0018) from the
Ministry of Health & Welfare, Republic of Korea.
References and notes
1. (a) Folkman, J. J. Natl. Cancer Inst. 1990, 82, 4; (b)
Hanahan, D.; Folkman, J. Cell 1996, 86, 353.
2. Folkman, J. N. Engl. J. Med. 1971, 285, 1182.
To measure the endothelial cell proliferation inhibitory
activity of the novel cyclopentane analogue of fumagil-
lol, chloroacetylcarbamoyl group, a side chain of
TNP-470 (3), was introduced, and each diastereomer
(20 and 200) was isolated by silica column chromato-
graphy. Anti-proliferating activities were evaluated
against calf pulmonary artery endothelial (CPAE) cells,
lymphoma EL-4 cells, and murine leukemia P388. IC50
3. Hanson, F. R.; Eble, E. J. Bacteriol. 1949, 58, 527.
4. (a) Ingber, D. E.; Fujita, T.; Kishmoto, S.; Sudo, K.;
Kanamaru, T.; Brem, H.; Folkman, J. Nature 1990, 345,
555; (b) Marui, S.; Itoh, F.; Kozai, Y.; Sudo, K.;
Kishimoto, S. Chem. Pharm. Bull 1992, 40, 96; (c) Hong,
C. I.; Kim, J. W.; Lee, S. J.; Ahn, S. K.; Choi, N. S.; Hong,
R. K.; Chun, H. S.; Moon, S. K.; Han, C. K. W.O. Patent
9959986, 1999; (d) Han, C. K.; Ahn, S. K.; Choi, N. S.;
Hong, R. K.; Moon, S. K.; Chun, H. S.; Lee, S. J.; Kim, J.
W.; Hong, C. I.; Kim, D.; Yoon, J. H.; No, K. T. Bioorg.
Med. Chem. Lett. 2000, 10, 39; (e) Fardis, M.
Pyun, H.-J.; Tario, J.; Jin, H.; Kim, C. U.; Ruckman, J.;
Lin, Y.; Green, L.; Hicke, B. Bioorg. Med. Chem. 2003, 11,
5051; (f) Pyun, H.-J.; Fardis, M.; Tario, J.; Yang, C. Y.;
Ruckman, J.; Henninger, D.; Jin, H.; Kim, C. U. Bioorg.
Med. Chem. Lett. 2004, 14, 91.
5. (a) Sin, N.; Meng, L.; Wang, M. Q. W.; Wen, J. J.;
Bornmann, W. G.; Crews, C. M. Proc. Natl. Acad. Sci.
USA 1997, 94, 6099; (b) Liu, S.; Widom, J.; Kemp, C. W.;
Crews, C. M.; Clardy, J. Science 1998, 282, 1324.
6. (a) Kim, D.; Ahn, S. K.; Bae, H.; Choi, W. J.; Kim, H. S.
Tetrahedron Lett. 1997, 38, 4437; (b) Kim, D.; Ahn, S. K.;
Bae, H.; Kim, H. S. Arch. Pharm. Res. 2005, 28, 129.
7. For total syntheses or approaches to fumagillin and
analogues by other groups see: (a) Corey, E. J.; Snider, B.
B. J. Am. Chem. Soc. 1972, 94, 2549; (b) Taber, D. F.;
Christos, T. E.; Rheingold, A. L.; Guzei, I. A. J. Am.
Chem. Soc. 1999, 121, 5589; (c) Vosburg, D. A.; Weiler, S.;
Sorensen, E. J. Angew Chem. Int. Ed. 1999, 38, 971; (d)
Picoul, W.; Urchegui, R.; Haudrechy, A.; Langlois, Y.
Tetrahedron Lett. 1999, 40, 4797; (e) Moffat, D.; Simpkins,
N. S. Synlett 2001, 661; (f) Boiteau, J.-G.; Van de Weghe,
P.; Eustache, J. Org. Lett. 2001, 3, 2737; (g) Vosburg, D.
A.; Weiler, S.; Sorensen, E. J. Chirality 2003, 15, 156; (h)
Picoul, W.; Bedel, O.; Haudrechy, A.; Langlois, Y. Pure
Appl. Chem. 2003, 75, 235; (i) Bedel, O.; Haudrechy, A.;
Langlois, Y. Eur. J. Org. Chem. 2004, 3813.
Figure 2.
Table 1. In vitro endothelial cell proliferation inhibitory activities
against CPAE, EL-4, and P-388 cell lines
Compound
IC50 (lg/mL)
CPAE
EL-4
P-388
20
200
8.8 · 10ꢀ2
3.0 · 10ꢀ1
1.1
P10
P10
5.7 · 10ꢀ1
Fumagillin (1)
TNP-470 (3)
3.0 · 10ꢀ3
2.0 · 10ꢀ4
1.6 · 10ꢀ3
3.8 · 10ꢀ3
P10
P10
8. All new compounds exhibited satisfactory spectroscopic
and analytical data, and the ratio of stereoisomers was