M. Yamashita et al. / Tetrahedron Letters 46 (2005) 5495–5498
5497
O
O
O
- CO2
NCBZ
NCBZ
HO
HN
HN
O
HN
HN
O
O
O
Ph
a
NCBZ
15
14
O
Ph
HN
HN
O
O
H
N
H
N
12
Ph
HO
R1
O
R1
O
N
N
Ph
Ph
13
16
Scheme 3. Reagents and conditions: (a) TFA, rt 3 h.
8. (a) Lee, S.-H.; Clapham, B.; Koch, G.; Zimmermann, J.;
Janda, K. D. Org. Lett. 2003, 5, 511; (b) Lee, S.-H.;
Yoshida, K.; Matsushita, H.; Clapham, B.; Koch, G.;
Zimmerman, J.; Janda, K. D. J. Org. Chem. 2004, 69,
8829.
9. Matsushita, H.; Lee, S.-H.; Yoshida, K.; Clapham, B.;
Koch, G.; Zimmermann, J.; Janda, K. D. Org. Lett. 2004,
6, 4627.
10. JandaJelTM resins are available from Aldrich Chemical Co.
(a) Toy, P. H.; Reger, T. S.; Garibay, P.; Garno, J. C.;
Malikayil, J. A.; Liu, G.; Janda, K. D. J. Comb. Chem.
2001, 3, 117; For recent applications, see: (b) Brummer,
O.; Clapham, B.; Janda, K. D. Tetrahedron Lett. 2001, 42,
2257; (c) Clapham, B.; Cho, C.-W.; Janda, K. D. J. Org.
Chem. 2001, 66, 868; (d) Moss, J. A.; Dickerson, T. J.;
Janda, K. D. Tetrahedron Lett. 2002, 43, 37.
11. (a) Barn, D. R.; Morphy, J. R.; Rees, D. C. Tetrahedron
Lett. 1996, 37, 3213; (b) Ley, S. V.; Mynett, D. M.; Koot,
W.-J. Synlett 1995, 1017; (c) Matsushita, H.; Lee, S.-H.;
Joung, M.; Clapham, B.; Janda, K. D. Tetrahedron Lett.
2004, 45, 313.
2. Conclusions
In summary, a noveland efficient N–H insertion strat-
egy for the synthesis of oxazolones from diazocarbonyls
has been devised. Additionally, in order to synthesize
oxazolone arrays using solid-phase synthetic methodol-
ogy, an alternative TFA labile linker strategy was devel-
oped; the Wang resin-bound diazocarbonylsubstrates
were also shown to be of great utility in the preparation
of oxazoles and imidazolones.
Acknowledgements
We gratefully acknowledge financial support from The
Scripps Research Institute, The Skaggs Institute for
ChemicalBiool gy and Novartis Pharma AG.
References and notes
12. Guillier, F.; Orain, D.; Bradley, M. Chem. Rev. 2000, 100,
2091.
13. (a) Lee, S.-H.; Matsushita, H.; Clapham, B.; Janda, K. D.
Tetrahedron 2004, 60, 3439; (b) Lee, S.-H.; Matsushita, H.;
Koch, G.; Zimmermann, J.; Clapham, B.; Janda, K. D. J.
Comb. Chem. 2004, 6, 822.
1. (a) Bunin, B. A. The Combinatorial Index; Academic Press:
London, 1998; (b) Obrecht, D.; Villalgordo, J. M. Solid-
Supported Combinatorial and Parallel Synthesis of
small-molecular-weight compound Libraries; Elsevier
Science, 1998; (c) Combinatorial Chemistry: Synthesis,
Analysis, Screening; Jung, G., Ed.; Wiley-VCH:
Weinheim, 1999; (d) Combinatorial Chemistry and Molec-
ular Diversity in Drug Discovery; Gordon, E. M., Kerwin,
J. F., Jr., Eds.; John Wiley and Sons: New York, 1998.
2. (a) Solid Phase Organic Synthesis; Czarnik, A. W., Ed.;
John Wiley and Sons: New York, 2001; (b) Solid Phase
Organic Synthesis; Burgess, K., Ed.; John Wiley and Sons:
New York, 2000.
3. For comprehensive coverage of the chemistry of diazo
compounds, see: Doyle, M. P.; McKervey, M. A.; Ye, T.
Modern Catalytic Methods for Organic Synthesis with
Diazo Compounds: From Cyclopropanes to Ylides; John
Wiley and Sons: New York, 1997; For a review covering
the use of diazocarbonyls in combinatorial and parallel
applications, see: Clapham, B. Curr. Opin. Drug Discovery
Dev. 2004, 7, 813.
14. See: Okonya, J. F.; Hoffman, R. V.; Johnson, J. M. J. Org.
Chem. 2002, 67, 1102, and references cited therein.
15. Polymer-bound a-diazo-b-ketoester 8. A 100 mL recovery
flask was charged with Wang resin (Polymer Labs, 5.00 g,
ꢀ5.0 mmol), tBu–acetoacetate (2.37 g, 15.0 mmol), and
toluene (75 mL). The mixture was heated to reflux for 6 h,
and the product collected in a fritted syringe and washed
with toluene. Dodecylbenzenesulfonyl azide (8.79 g,
25 mmol) and Et3N (3.49 mL, 25 mmol) were added, and
the resultant mixture was shaken for 24 h. Washing with
DMF, THF, ether, and hexanes gave 8 white powder;
yield 100%; Elemental Analysis: N = 2.56%; loading
0.914 mmol/g; IR (cmÀ1) 2137, 1713, 1657.
Phenyl carbamate insertion. A round bottomed flask was
charged with resin 8 (R1 = Me, 600 mg, 0.55 mmol), phenyl
carbamate 2 (226 mg, 1.65 mmol), purged with argon and
then a toluene (8 mL) was added. The mixture was heated
to 80 ꢁC and a suspension of Rh2Oct4 (ꢀ9 mg, 2 mol%) in
toluene (2.0 mL) was added over 10 min. Nitrogen effer-
vescence was observed and stirring was continued for 1 h,
before the product was collected by filtration and washed
with DMF, THF, CHCl3, ether, and hexanes. Pale brown
powder; IR (cmÀ1) 1725 (broad peak).
4. Clapham, B.; Lee, S.-H.; Koch, G.; Zimmermann, J.;
Janda, K. D. Tetrahedron Lett. 2002, 43, 5407.
5. Burke, M. D.; Schreiber, S. L. Angew. Chem., Int. Ed.
2004, 43, 46.
6. Clapham, B.; Spanka, C.; Janda, K. D. Org. Lett. 2001, 3,
2173.
Oxazolone formation. A round bottomed flask was
charged with insertion product (580 mg), toluene
7. Lee, S.-H.; Clapham, B.; Koch, G.; Zimmermann, J.;
Janda, K. D. J. Comb. Chem. 2003, 5, 188.