Radical Addition Approach to Asymmetric Amine Synthesis
of constructing hindered C-C bonds. The high basicity
associated with these organometallic nucleophiles is
complemented by the milder conditions inherent to
Strecker,11 Mannich,12 and allylsilane additions,13 along
with other recently developed addition reactions.14 Still,
these place significant restrictions on the identity of the
incoming nucleophile destined to become R2 of the chiral
amine (Figure 1). On the other hand, radical reactions
can accommodate a broad range of functionality within
the radical itelf. This suggests great potential scope in
their future application in asymmetric amine synthesis,
pending development of versatile imino acceptors capable
of effective stereocontrol.
Previous intermolecular radical additions by Naito3
and Bertrand4 showed that imino acceptors could be
effectively employed in additions of secondary and ter-
tiary alkyl iodides. These reactions exploited triethylbo-
rane or diethylzinc as initiators, with or without tribu-
tyltin hydride. In some cases, the additions have been
rendered stereoselective by employing a chiral auxiliary
attached either to the carbon or nitrogen of the CdN
bond.3a,f,i,p,4b,d These seminal precedents established that
stereochemical information can be transferred through
the carbon branch or nitrogen substituent of the imine
(Figure 2a). However, in each case, a second independent
activating substituent was employed, and thus, the imino
acceptors required modifications to both nitrogen and
carbon substituents of the imine.
FIGURE 1. Radical carbon-carbon bond disconnection of
chiral amines.
can be observed with branched organometallic reagents
such as i-PrMgBr, which can competitively reduce the
CdN bond via hydride transfer.9 Hindered reagents such
as t-BuMgBr or t-BuLi often fail to give addition prod-
ucts,10 whereas tert-butyl radical addition is quite capable
(2) Reviews of radical additions to imines and related acceptors: (a)
Friestad, G. K. Tetrahedron 2001, 57, 5461-5496. (b) Fallis, A. G.;
Brinza, I. M. Tetrahedron 1997, 53, 17543-17594. (c) For selected
seminal reports of intermolecular radical additions to CdN, see: Hart,
D. J.; Seely, F. L. J. Am. Chem. Soc. 1988, 110, 1631. Russell, G. A.;
Yao, C.-F.; Rajaratnam, R.; Kim, B. H. J. Am. Chem. Soc. 1991, 113,
373. Shono, T.; Kise, N.; Fujimoto, T. Tetrahedron Lett. 1991, 32, 525.
Hanamoto, T.; Inanaga, J. Tetrahedron Lett. 1991, 32, 3555. Kim, S.;
Yoon, J.-Y. J. Am. Chem. Soc. 1997, 119, 5982.
(3) (a) Miyabe, H.; Ushiro, C.; Naito, T. J. Chem. Soc., Chem.
Commun. 1997, 1789-1790. (b) Miyabe, H.; Shibata, R.; Ushiro, C.;
Naito, T. Tetrahedron Lett. 1998, 39, 631-634. (c) Miyabe, H.;
Yoshioka, N.; Ueda, M.; Naito, T. J. Chem. Soc., Perkin Trans. 1 1998,
3659-3660. (d) Miyabe, H.; Shibata, R.; Sangawa, M.; Ushiro, C.;
Naito, T. Tetrahedron 1998, 54, 11431-11444. (e) Miyabe, H.; Ueda,
M.; Yoshioka, N.; Naito, T. Synlett 1999, 465-467. (f) Miyabe, H.; Fujii,
K.; Naito, T. Org. Lett. 1999, 1, 569-572. (g) Miyabe, H.; Fujishima,
Y.; Naito, T. J. Org. Chem. 1999, 64, 2174-2175. (h) Miyabe, H.;
Yamakawa, K.; Yoshioka, N.; Naito, T. Tetrahedron 1999, 11209-
11218. (i) Miyabe, H.; Ushiro, C.; Ueda, M.; Yamakawa, K.; Naito, T.
J. Org. Chem. 2000, 65, 176-185. (j) Miyabe, H.; Ueda, M.; Yoshioka,
N.; Yamakawa, K.; Naito, T. Tetrahedron 2000, 56, 2413-2420. (k)
Miyabe, H.; Konishi, C.; Naito, T. Org. Lett. 2000, 2, 1443-1445. (l)
Miyabe, H.; Ueda, M.; Naito, T. J. Chem. Soc., Chem. Commun. 2000,
2059-2060. (m) Miyabe, H.; Ueda, M.; Naito, T. J. Org. Chem. 2000,
5043-5047. (n) Miyabe, H.; Nishimura, A.; Ueda, M.; Naito, T. J.
Chem. Soc., Chem. Commun. 2002, 1454-1455. (o) Ueda, M.; Miyabe,
H.; Nishimura, A.; Sugino, H.; Naito, T. Tetrahedron: Asymmetry 2003,
14, 2857-2859. (p) Ueda, M.; Miyabe, H.; Teramachi, M.; Miyata, O.;
Naito, T. J. Chem. Soc., Chem. Commun. 2003, 426-427. (q) Miyabe,
H.; Konishi, C.; Naito, T. Chem. Pharm. Bull. 2003, 51, 540-544. (r)
Miyabe, H.; Fujii, K.; Naito, T. Org. Biomol. Chem. 2003, 1, 381-390.
(s) Ueda, M.; Miyabe, H.; Nishimura, A.; Miyata, O.; Takemoto, Y.;
Naito, T. Org. Lett. 2003, 5, 3835-3838. (t) Miyabe, H.; Ueda, M.;
Nishimura, A.; Naito, T. Tetrahedron 2004, 60, 4227-4235. (u)
McNabb, S. B.; Ueda, M.; Naito, T. Org. Lett. 2004, 6, 1911-1914. (v)
For a review of the Naito group’s work in this area, see: Miyabe, H.;
Ueda, M.; Naito, T. Synlett 2004, 1140-1157.
(4) (a) Bertrand, M. P.; Feray, L.; Nouguier, R.; Stella, L. Synlett
1998, 780-782. (b) Bertrand, M. P.; Feray, L.; Nouguier, R.; Perfetti,
P. Synlett 1999, 1148-1150. (c) Bertrand, M. P.; Feray, L.; Nouguier,
R.; Perfetti, P. J. Org. Chem. 1999, 64, 9189-9193. (d) Bertrand, M.
P.; Coantic, S.; Feray, L.; Nouguier, R.; Perfetti, P. Tetrahedron 2000,
56, 3951-3961. (e) Bertrand, M.; Feray, L.; Gastaldi, S. C. R. Acad.
Sci. Paris, Chim. 2002, 5, 623-638.
(5) For recent examples not cited in ref 2, see: (a) Yamada, K.;
Yamamoto, Y.; Maekawa, M.; Tomioka, K. J. Org. Chem. 2004, 69,
1531-1534. (b) Yamada, K.; Yamamoto, Y.; Tomioka, K. Org. Lett.
2003, 5, 1797-1799. (c) Yamada, K.; Fujihara, H.; Yamamoto, Y.;
Miwa, Y.; Taga, T.; Tomioka, K. Org. Lett. 2002, 4, 3509-3511. (d)
Torrente, S.; Alonso, R. Org. Lett. 2001, 3, 1985-1987. (e) Ferna´ndez,
M.; Alonso, R. Org. Lett. 2003, 5, 2461-2464. (f) Masson, G.; Py, S.;
Valle´e, Y. Angew. Chem., Int. Ed. 2002, 41, 1772-1775. (g) Alves, M.
J.; Fortes, G.; Guimara˜es, E.; Lemos, A. Synlett 2003, 1403-1406. (h)
Liu, X.; Zhu, S.; Wang, S. Synthesis 2004, 683-691. (i) Singh, N.;
Anand, R. D.; Trehan, S. Tetrahedron Lett. 2004, 45, 2911-2913. (j)
Halland, N.; Jørgensen, K. A. J. Chem. Soc., Perkin Trans. 1 2001,
1290-1295.
A potentially more versatile approach to stereocon-
trolled radical addition to imines would achieve both
activation and stereocontrol from a single modification
to the nitrogen substituent of the imino acceptor (Figure
(7) For reviews of acyclic stereocontrol in radical addition to CdC
bonds, see: (a) Sibi, M. P.; Porter, N. A. Acc. Chem. Res. 1999, 32, 163
and references therein. (b) Curran, D. P.; Porter, N. A.; Giese, B.
Stereochemistry of Radical Reactions; Concepts, Guidelines, and
Synthetic Applications; VCH: New York; 1995.
(8) (a) Aza-enolization of imines with Grignard reagents: Stork, G.;
Dowd, S. R. J. Am. Chem. Soc. 1963, 85, 2178. Wittig, G.; Frommeld,
H. D.; Suchanek, P. Angew. Chem., Int. Ed. Engl. 1963, 2, 683. (b)
Deprotonation of iminium ions can be competitive with addition:
Guerrier, L.; Royer, J.; Grierson, D. S.; Husson, H.-P. J. Am. Chem.
Soc. 1983, 105, 7754. (c) Less basic organocerium reagents also exhibit
aza-enolization: Enders, D.; Diez, E.; Fernandez, R.; Martin-Zamora,
E.; Munoz, J. M.; Pappalardo, R. R.; Lassaletta, J. M. J. Org. Chem.
1999, 64, 6329-6336.
(9) Liu, G.; Cogan, D. A.; Ellman, J. A. J. Am. Chem. Soc. 1997,
119, 9913-9914.
(10) Moody, C. J.; Gallagher, P. T.; Lightfoot, A. P.; Slawin, A. M.
Z. J. Org. Chem. 1999, 64, 4419-4425.
(11) Selected asymmetric Strecker reactions: Keith, J. M.; Jacobsen,
E. N. Org. Lett. 2004, 6, 153-155. Masumoto, S.; Usuda, H.; Suzuki,
M.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2003, 125, 5634-
5635. Yet, L. Angew. Chem., Int. Ed. 2001, 40, 875-877.
(12) Selected asymmetric Mannich reactions: Hamada, T.; Manabe,
K.; Kobayashi, S. J. Am. Chem. Soc. 2004, 126, 7768-7769. Akiyama,
T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem., Int. Ed. 2004, 43,
1566-1568. Wenzel, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2002,
124, 12964-12965. Notz, W.; Sakthivel, K.; Bui, T.; Zhong, G.; Barbas,
C. F., III. Tetrahedron Lett. 2001, 42, 199-201. List, B. J. Am. Chem.
Soc. 2000, 122, 9336-9337. Saito, S.; Hatanaka, K.; Yamamoto, H.
Org. Lett. 2000, 2, 1891-1894. Miura, K.; Tamaki, K.; Nakagawa, T.;
Hosomi, A. Angew. Chem., Int. Ed. 2000, 39, 1958-1960.
(13) Selected asymmetric allylsilane additions to CdN bonds: Berg-
er, R.; Duff, K.; Leighton, J. L. J. Am. Chem. Soc. 2004, 126, 5686-
5687. Kobayashi, S.; Ogawa, C.; Konishi, H.; Sugiura, M. J. Am Chem.
Soc. 2003, 125, 6610-6611. Fernandes, R. A.; Yamamoto, Y. J. Org.
Chem. 2004, 69, 735-738.
(6) General reviews of radical reactions and their stereocontrol: (a)
Radicals in Organic Synthesis; Renaud, P., Sibi, M., Eds.; Wiley-
VCH: New York; 2001. (b) Curran, D. P.; Porter, N. A.; Giese, B.
Stereochemistry of Radical Reactions: Concepts, Guidelines, and
Synthetic Applications; VCH: New York, 1995. (c) Sibi, M. P.; Porter,
N. A. Acc. Chem. Res. 1999, 32, 163-171. (d) Renaud, P.; Gerster, M.
Angew. Chem., Int. Ed. 1998, 37, 2563-2579. (e) Giese, B.; Kopping,
B.; Gobel, T.; Dickhaut, J.; Thoma, G.; Kulicke, K. J.; Trach, F. Org.
React. 1996, 48, 301-856. (f) Jasperse, C. P.; Curran, D. P.; Fevig, T.
L. Chem. Rev. 1991, 91, 1237-1286. (g) Giese, B. Radicals in Organic
Synthesis: Formation of Carbon-Carbon Bonds; Pergamon Press:
New York, 1986. (h) Hart, D. J. Science 1984, 223, 883-887.
(14) (a) For examples, see ref 1. Also see: (b) Aziridine formation:
Williams, A. L., Johnston, J. N. J. Am. Chem. Soc. 2004, 126, 1612-
1613. Antilla, J. C.; Wulff, W. D. Angew. Chem., Int. Ed. 2000, 39,
4518-4521. (c) Nitroalkane addition: Ballini, R.; Bosica, G.; Fiorini,
D.; Palmieri, A.; Petrini, M. Chem. Rev. 2005, 105, 933-971.
J. Org. Chem, Vol. 70, No. 16, 2005 6331