10.1002/ejoc.201901729
European Journal of Organic Chemistry
COMMUNICATION
Bakali, V. Vingtdeux, N. Sergeant and P. Melnyk, Eur. J. Med. Chem.,
2018, 159, 104.
and D. P. Kim, Angew. Chem. Int. Ed. 2013, 52, 6735; Angew. Chem.
2013, 125, 6867; e) C. Brancour, T. Fukuyama, Y. Mukai, T. Skrydstrup
and I. Ryu, Org. Lett. 2013, 15, 2794; f) J. D. Nguyen, B. Reiß, C. Dai
and C. R. J. Stephenson, Chem. Commun. 2013, 49, 4352; g) C.
Battilocchio, J. M. Hawkins and S. V. Ley, Org. Lett. 2013, 15, 2278; h)
A. S. Kleinke and T. F. Jamison, Org. Lett. 2013, 15, 710; i) K. Asano,
Y. Uesugi and J. Yoshida, Org. Lett. 2013, 15, 2398; j) L. Guetzoyan, N.
Nikbin, I. R. Baxendale and S. V. Ley, Chem. Sci. 2013, 4, 764; k) S.
Fuse, Y. Mifune and T. Takahashi, Angew. Chem. Int. Ed. 2014, 53,
851; Angew. Chem. 2014, 126, 870; l) Z. He and T. F. Jamison, Angew.
Chem. Int. Ed. 2014, 53, 3353; Angew. Chem. 2014, 126, 3421; m) A.
Nagaki, Y. Takahashi and J. Yoshida, Chem. Eur. J. 2014, 20, 7931; n)
T. Fukuyama, T. Totoki and I. Ryu, Green Chem. 2014, 16, 2042; o) M.
Chen, S. Ichikawa and S. L. Buchwald, Angew. Chem. Int. Ed. 2015,
54, 263; Angew. Chem. 2015, 127, 265; p) S. Fuse, Y. Mifune, H.
Nakamura and H. Tanaka, Nat. Commun. 2016, 7, 13491; q) A. Nagaki,
Y. Takahashi and J. Yoshida, Angew. Chem. Int. Ed. 2016, 55, 5327;
Angew. Chem. 2016, 128, 5413; r) H. Seo, M. H. Katcher and T. F.
Jamison, Nat. Chem. 2017, 9, 453; s) G. Parisi, M. Colella, S. Monticelli,
G. Romanazzi, W. Holzer, T. Langer, L. Degennaro, V. Pace and R.
Luisi, J. Am. Chem. Soc. 2017, 139, 13648; t) K. Komuro, A. Nagaki, H.
Shimoda, M. Uwamori, J. Yoshida and M. Nakada, Synlett, 2018, 29,
1989; u) H. Kim, Y. Yonekura and J. Yoshida, Angew. Chem. Int. Ed.
2018, 57, 4063; v) K. Tanaka, H. Yoshizawa and M. Atobe, Synlett,
2019, 30, 1194; w) A. Nagaki, H. Yamashita, K. Hirose, Y. Tsuchihashi
and J. Yoshida, Angew. Chem. Int. Ed. 2019, 58, 4027. .
[2]
Some selected recent review: a) G. Dyker, Angew. Chem. Int. Ed. 1999,
38, 1698; b) D. Alberico, M. E. Scott and M. Lautens, Chem. Rev. 2007,
107, 174; c) C. Liu, H. Zhang, W. Shi and A. Lei, Chem. Rev. 2011, 111,
1780; d) J. Magano and J. R. Dunetz, Chem. Rev. 2011, 111, 2177; e)
S. H. Cho, J. Y. Kim, J. Kwak and S. Chang, Chem. Soc. Rev., 2011,
40, 5068; f) R. Jana, T. P. Pathak and M. S. Sigman, Chem. Rev. 2011,
111, 1417; g) L. Ackermann, Chem. Rev. 2011, 111, 1315; h) F-S. Han,
Chem. Soc. Rev., 2013, 42, 5270.
[3]
Some selected recent examples: a) Y. Kim, H. Park, J. Lee, J. Tae, H. J.
Kim, S-J. Min, H. Rhim and H. Choo, Eur. J. Med. Chem., 2016, 123,
180; b) M. Gay, P. Carato, M. Coevoet, N. Renault, P-E. Larchanché, A.
Barczyk, S. Yous, L. Buée, N. Sergeant and P. Melnyk, Bioorg. Med.
Chem., 2018, 26, 2151; c) L. Tang, C. Huang, J. Zhong, J. He, J. Guo,
M. Liu, J-P. Xu, H-T. Wang and Z-Z. Zhou, Eur. J. Med. Chem., 2019,
168, 221.
[4]
[5]
For review, see: T. Ishiyama, N. Miyaura, J. Organomet. Chem., 2000,
611, 392.
Books on flow microreactor synthesis: a) W.Ehrfeld, V. Hessel and H.
Löwe, Microreactors, Wiley-VCH, Weinheim, 2000; b) V.Hessel, S.
Hardt and H. Löwe, Chemical Micro Process Engineering, Wiely-VCH,
Weinheim, 2004; c) J. Yoshida, Flash Chemistry. Fast Organic
Synthesis in Microsystems, Wiley-Blackwell, Oxford, 2008; d) Micro
Precess Engineering; (Eds.: V. Hessel, A. Renken, J. C. Schouten and
J. Yoshida), Wiley-Blackwell, Oxford, 2009; e) Microreactors in Organic
Chemistry and Catalysis, 2nd ed. (Ed.: T. Wirth), Wiley, Hoboken,
2013; f) Microreactors in Preparative Chemistry (Ed.: W.
Reschetilowski), Wiley-VCH, Weinheim, 2013; g) F. Darvas, V. Hessel
and G. Dorman, Flow Chemistry, DeGruyter: Berlin, 2014; h) J. Yoshida,
Basics of Flow Microreactor Synthesis Springer, Tokyo, 2015; i) Organ-
ometallic Flow Chemistry (Ed.: T. Noël), Springer, Basel, 2016.
Reviews on flow microreactor synthesis: a) P. Watts and S. J. Haswell,
Chem. Soc. Rev., 2005, 34, 235; b) J. Yoshida, A. Nagaki, T. Iwasaki
and S. Suga, Chem. Eng. Technol., 2005, 3, 259; c) K. Geyer, J. D. C.
Codee and P. H. Seeberger, Chem. Eur. J., 2006, 12, 8434; d) G.
Whitesides, Nature, 2006, 442, 368; e) A. J. deMello, Nature, 2006, 442,
394; f) J. Kobayashi, Y. Mori and S. Kobayashi, Chem. Asian J., 2006,
1, 22; g) B. P. Mason, K. E. Price, J. L. Steinbacher, A. R. Bogdan and
D. T. McQuade, Chem. Rev. 2007, 107, 2300; h) B. Ahmed-Omer, J. C.
Brandt and T. Wirth, Org. Biomol. Chem. 2007, 5, 733; i) P. Watts and
C. Wiles, Chem. Commun. 2007, 443; j) T. Fukuyama, M. T. Rahman,
M. Sato and I. Ryu, Synlett 2008, 151; k) W. Lin, Y. Wang, S. Wang
and H. Tseng, Nano Today, 2009, 4, 470; l) K. Geyer, T. Gustafsson
and P. H. Seeberger, Synlett, 2009, 2382; m) R. L. Hartman and K. F.
Jensen, Lab Chip 2009, 9, 2495; n) S. Marrea and K. F. Jensen, Chem.
Soc. Rev., 2010, 39, 1183; o) D. Webb and T. F. Jamison, Chem. Sci.,
2010, 1, 675; p) J. P. McMullen and K. F. Jensen, Annu. Rev. Anal.
Chem. 2010, 3, 19; q) J. Yoshida, H. Kim and A. Nagaki,
ChemSusChem 2011, 4, 331; r) C. Wiles and P. Watts, GreenChem.
2012, 14, 38; s) A. Kirschning, L. Kupracz and J. Hartwig, Chem. Lett.
2012, 41, 562; t) D. T. McQuade and P. H. Seeberger, J. Org. Chem.
2013, 78, 6384; u) K. S. Elvira, X. C. I. Solvas, R. C. R. Wootton and A.
J. deMello, Nat. Chem. 2013, 5, 905; v) J. C. Pastre, D. L. Browne and
S. V. Ley, Chem. Soc. Rev. 2013, 42, 8849; w) I. R. Baxendale, J.
Chem. Technol. Biotechnol. 2013, 88, 519; x) H. P. L. Gem-oets, Y. Su,
M. Shang, V. Hessel, R. Luque and T. Noël, Chem. Soc. Rev. 2016, 45,
83; y) D. Cambié, C. Bottecchia, N. J. W. Straathof, V. Hessel and T.
Noël, Chem. Rev. 2016, 116, 10276; z) M. B. Plutschack, B. Pieber, K.
Gilmore and P. H. Seeberger, Chem. Rev. 2017, 117, 11796.
[8]
a) J. Yoshida, Flash Chemistry. Fast Organic Synthesis in
Microsystems; Wiley-Blackwell, Chichester, United Kingdom, 2008; b) J.
Yoshida, Chem. Commun. 2005, 4509; c) J. Yoshida, A. Nagaki and T.
Yamada, Chem. Eur. J. 2008, 14, 7450; d) J. Yoshida, Chem. Record
2010, 10, 332; e) J. Yoshida, Y. Takahashi and A. Nagaki, Chem.
Commun. 2013, 49, 9896; f) T. Fujita, N. Konno, Y. Watabe, T.
Ichitsuka, A. Nagaki, J. Yoshida and J. Ichikawa, J. Fluorine Chem.
2018, 207, 72; g) Y. Endo, M. Furusawa, T. Shimazaki, Y. Takahashi, Y.
Nakahara and A. Nagaki, Org. Proc. Res. Dev. 2019, 23, 635.
[6]
[9]
a) H. Usutani, Y. Tomida, A. Nagaki, H. Okamoto, T. Nokami and J.
Yoshida, J. Am. Chem. Soc., 2007, 129, 3047; b) A. Nagaki, E.
Takizawa and J. Yoshida, J. Am. Chem. Soc., 2009, 131, 1654; c) A.
Nagaki, H. Kim, H. Usutani, C. Matsuo, J. Yoshida, Org. Biomol. Chem.,
2010, 8, 1212; d) Y. Tomida, A. Nagaki and J. Yoshida, J. Am. Chem.
Soc., 2011, 133, 3744; e) A. Nagaki, C. Matsuo, S. Kim, K. Saito, A.
Miyazaki and J. Yoshida, Angew. Chem., Int. Ed., 2012, 51, 3245; f) A.
Nagaki, Y. Tsuchihashi, S. Haraki and J. Yoshida, Org. Biomol. Chem.,
2015. 13. 7140; g) H. Kim, K.-I. Min, K. Inoue, D. J. Im, D.-P. Kim and J.
Yoshida, Science, 2016, 352, 691; h) A. Nagaki, Tetrahedron Lett. 2019,
60, 150923; i) A. Nagaki, H. Yamashita, K. Hirose, Y. Tsuchihashi, M.
Takumi and J. Yoshida, Chem. Eur. J. 2019, 25, 13719.
[10] a) G. Barker, P. O’Brien and K. R. Campos, Org. Lett. 2010, 12, 4176;
b) R. Mansueto, V. Mallardo, F. M. Perna, A. Salomone and V. Capriati,
Chem. Commun. 2013, 49, 10160.
[11] A. Nagaki, Y. Moriwaki and J. Yoshida, Chem. Commun. 2012, 48,
11211.
[12] a) A. Nagaki, K. Hirose, Y. Moriwaki, K. Mitamura, K. Matsukawa, N.
Ishizuka and J. Yoshida, Catal. Sci. Technol. 2016, 6, 4690; b) A.
Nagaki, K. Hirose, O. Tonomura, T. Taga, S. Taniguchi, S. Hasebe, N.
Ishizuka and J. Yoshida, Org. Process Res. Dev. 2016, 20, 687; c) O.
Tonomura, S. Taniguchi, K. Nishi, A. Nagaki, K. Hirose, J. Yoshida, N.
Ishizuka and S. Hasebe, Catalysts, 2019, 9, 308; d) A. Nagaki, K.
Hirose, K. Mitamura, K. Matsukawa, N. Ishizuka, T. Yamamoto, M.
Takumi, Y. Takahashi and J. Yoshida, Catalysts, 2019, 9, 300.
[13] V. Hessel, C. Hofmann, H. Löwe, A. Meudt, S. Scherer, F. Schönfeld
and B. Werner, Org. Proc. Res. Dev. 2004, 8, 511.
[7]
Some selected recent examples: a) D. Cantillo, M. Baghbanzadeh and
C. O. Kappe, Angew. Chem. Int. Ed. 2012, 51, 10190; Angew. Chem.
2012, 124, 10337; b) W. Shu and S. L. Buchwald, Angew. Chem. Int.
Ed. 2012, 51, 5355; Angew. Chem. 2012, 124, 5451; c) F. Lévesque
and P. H. Seeberger, Angew. Chem. Int. Ed. 2012, 51, 1706; Angew.
Chem. 2012, 124, 1738; d) K. C. Basavaraju, S. Sharma, R. A. Maurya
[14] a) A. Nagaki, M. Togai, S. Suga, N. Aoki, K. Mae and J. Yoshida, J. Am.
Chem. Soc. 2005, 127, 11666; b) A. Nagaki, N. Takabayashi, Y.
Tomida and J. Yoshida, Org. Lett. 2008, 10, 3937; c) J. Yoshida, A.
Nagaki, T. Iwasaki and S. Suga, Chem. Eng. Technol. 2005, 28, 259; d)
This article is protected by copyright. All rights reserved.