S. Jin et al. / Journal of Molecular Structure 1017 (2012) 51–59
59
[3] L.M. Epstein, E.S. Shubina, Coord. Chem. Rev. 231 (2002) 165.
[4] D. Payer, A. Comisso, A. Dmitriev, T. Strunskus, N. Lin, C. Woll, A. DeVita, J.V.
Barth, K. Kern, Chem. Eur. J. 13 (2007) 3900.
[5] T. Schnabel, A. Srivastava, J. Vrabec, H. Hasse, J. Phys. Chem. B 111 (2007)
9871.
[6] N.M. Tonge, E.C. MacMahon, I. Pugliesi, M.C. Cockett, J. Chem. Phys. 126 (2007)
154319.
[7] S.J. Suresh, J. Chem. Phys. 126 (2007) 204705.
[8] S.Z. Fisher, S. Anderson, R. Henning, K. Moffat, P. Langan, P. Thiyagarajand, A.J.
Schultzd, Acta Crystallogr. D 63 (2007) 1178.
to strongest acceptor’’. For the carboxylic acids present in 1–4, the
fumaric acid has the relatively larger Pka (Pka1) which may led the
D
Pka (between the L and the carboxylic acid) to be out of the range
for salt formation. Although citric acid in 5 has the similar Pka
(Pka1) with the fumaric acid in 4, this molecule (citric acid) may
be too flexible introducing factors that result more important than
the small difference between the donors to decide the preferred
molecular interactions.
This study has demonstrated that the NAHꢀ ꢀ ꢀO/OAHꢀ ꢀ ꢀN hydro-
gen bond is the primary intermolecular force in a family of
structures containing the OHꢀ ꢀ ꢀNquinoline synthons. The secondary
CAHꢀ ꢀ ꢀO hydrogen bonds were observed in all compounds. CH3AO
interactions are found in compounds 1, 3, and 5. Compound 1
[9] S. Aitipamula, A. Nangia, Chem.-Eur. J. 1 (1) (2005) 6727.
[10] K.K. Arora, V.R. Pedireddi, J. Org. Chem. 68 (2003) 9177.
[11] B.R. Bhogala, A. Nangia, Cryst. Growth Des. 3 (2003) 547.
[12] C.B. Aakeröy, D.J. Salmon, CrystEngComm. 7 (2005) 439.
[13] C.M. Grossel, A.N. Dwyer, M.B. Hursthouse, J.B. Orton, CrystEngComm 8 (2006)
123.
[14] S. Varughese, V.R. Pedireddi, Chem.-Eur. J. 12 (2006) 1597.
[15] M. Du, Z.H. Zhang, X.J. Zhao, H. Cai, Cryst. Growth Des. 6 (2006) 114.
[16] A.D. Bond, Chem. Commun. (2003) 250.
[17] B.R. Bhogala, A. Nangia, New J. Chem. 32 (2008) 800.
[18] S.W. Jin, D.Q. Wang, Z.J. Jin, L.Q. Wang, Polish J. Chem. 83 (2009) 1937.
[19] S.W. Jin, D.Q. Wang, J. Chem. Crystallogr. 40 (2010) 914.
[20] R.H. Blessing, Acta Crystallogr. A51 (1995) 33.
[21] G.M. Sheldrick, SADABS ‘‘Siemens Area Detector Absorption Correction’’,
University of Göttingen, Göttingen, Germany, 1996.
[22] SHELXTL-PC, version 5.03; Siemens Analytical Instruments: Madison, WI.
[23] C.B. Aakeröy, J. Desper, M.E. Fasulo, CrystEngComm. 8 (2006) 586.
[24] M. Lazzarrotto, E.E. Castellano, F.F. Nachtigall, J. Chem. Crystallogr. 37 (2007)
699.
[25] (a) D.E. Lynch, L.C. Thomas, G. Smith, K.A. Byriel, C.H.L. Kennard, Aust. J. Chem.
51 (1998) 867;
(b) G. Smith, J.M. White, Aust. J. Chem. 54 (2001) 97.
[26] D.H. Williams, I. Fleming, Spectroscopic Methods in Organic Chemistry, 5th
ed., McGraw-hill, London, 1995.
[27] E.P.C. Junk, C.J. Kepert, L.M. Louis, T.C. Morien, B.W. Skelton, A.H. White, Z.
Anorg, Allg. Chem. 632 (2006) 1312.
possesses O–
p interaction, while there are p–p interactions in
compound 2.
The results presented herein indicate that the strength and
directionality of the N+AHꢀ ꢀ ꢀOꢁ, OAHꢀ ꢀ ꢀO, and OAHꢀ ꢀ ꢀN hydrogen
bonds (ionic or neutral) between carboxylic acids and 2-methyl-
quinoline are sufficient to bring about the formation of binary
organic salts or cocrystals.
5. Supporting information available
Crystallographic data for the structural analysis have been
deposited with the Cambridge Crystallographic data center, CCDC
Nos. 851592 for 1, 836676 for 2, 836679 for 3, 835832 for 4, and
841400 for 5. Copies of this information may be obtained free of
charge from the +44(1223)336-033 or Email: deposit@ccdc.cam.a-
[28] J. Bernstein, R.E. Davis, L. Shimoni, N.L. Chang, Angew. Chem. Int. Ed. 34 (1995)
1555.
[29] G. Smith, U.D. Wermuth, J.M. White, Acta Cryst. C61 (2005) o105.
[30] S.W. Jin, D.Q. Wang, J. Chem. Crystallogr. 41 (2011) 1085.
[31] Z.M. Jin, Y.J. Pan, D.J. Xu, Y.Z. Xu, Acta Cryst. C56 (2000) 69.
[32] D. Boenigk, D.J. Mootz, J. Am. Chem. Soc. 110 (1988) 2135.
[33] Z.M. Jin, Y.J. Pan, M.L. Hu, S. Liang, J. Chem. Crystallogr. 31 (2001) 191.
[34] A. Bondi, J. Phys. Chem. 68 (1964) 441.
[35] T. Steiner, I. Majerz, C.C. Wilson, Angew. Chem. Int. Ed. 40 (2001) 2651.
[36] H. Eshtiagh-Hosseini, M. Mahjoobizadeh, M. Mirzai, K. Fromm, A. Crochet, Eur.
J. Chem. 1 (2010) 179.
Acknowledgements
We gratefully acknowledge the financial support of the Educa-
tion Office Foundation of Zhejiang Province (Project No.
Y201017321) and the financial support of the Zhejiang A & F
University Science Foundation (Project No. 2009FK63).
[37] J.P. Glusker, D. van der Helm, W.E. Love, M.L. Dornberg, A.L. Patterson, J. Am.
Chem. Soc. 82 (1960) 2964.
References
[38] N. Schultheiss, K. Lorimer, S. Wolfe, J. Desper, CrystEngComm. 12 (2010)
742.
[39] C.B. Aakeröy, M.E. Fasulo, J. Desper, Mol. Pharm. 4 (2007) 317.
[40] L.C.R. Andrade, M.M.R. Costa, J.A. Paixão, M.L. Santos, J. Agostinho Moreira,
M.R. Chaves, A. Almeida, Z. Kristallogr, NCS 217 (2002) 77.
[1] G.A. Jeffrey, W. Saenger, Hydrogen Bonding in Biological Structures, Springer-
Verlag, Berlin, 1991.
[2] G. A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford University Press,
New York, 1997.
ˇ ´
[41] S. Karki, T. Frišcic, W. Jones, W.D.S. Motherwell, Mol. Pharm. 4 (2007) 347.