Published on Web 05/21/2009
Detailed Study of C-O and C-C Bond-Forming Reductive
Elimination from Stable C2N2O2-Ligated Palladium(IV)
Complexes
Joy M. Racowski, Allison R. Dick, and Melanie S. Sanford*
Department of Chemistry, UniVersity of Michigan, 930 North UniVersity AVenue,
Ann Arbor, Michigan 48109
Received February 24, 2009; E-mail: mssanfor@umich.edu
Abstract: This paper describes the synthesis of a series of PdIV complexes of general structure
(N∼C)2PdIV(O2CR)2 (N∼C ) a rigid cyclometalated ligand; O2CR ) carboxylate) by reaction of (N∼C)2PdII
with PhI(O2CR)2. The majority of these complexes undergo clean C-O bond-forming reductive elimination,
and the mechanism of this process has been investigated. A variety of experiments, including Hammett
plots, Eyring analysis, crossover studies, and investigations of the influence of solvent and additives, suggest
that C-O bond-forming reductive elimination proceeds via initial carboxylate dissociation followed by C-O
coupling from a 5-coordinate cationic PdIV intermediate. The mechanism of competing C-C bond-forming
reductive elimination from these complexes has also been investigated and is proposed to involve direct
reductive elimination from the octahedral PdIV centers.
Studies of C-O bond formation at PdIV have proven
Introduction
challenging for two major reasons. First, there are relatively
few examples of isolable PdIV complexes containing oxygen
donor ligands.8,9 Second, the available complexes are typically
stabilized by the presence of multiple σ-alkyl and/or aryl ligands.
As a result, investigations of C-O bond-forming reductive
elimination have been hampered by competing C-C coupling
processes.8,9 Hence, we sought to design a new model system
that would allow for systematic mechanistic investigations of
C-O bond-forming reductive elimination from PdIV centers.
We reasoned that PdIV complexes of general structure
(N∼C)2PdIV(O2CR)2 (B) (N∼C ) a rigid cyclometalated ligand)
might serve as attractive models for A on the basis of several
key design features (Scheme 2). First, the N∼C ligands were
selected to stabilize the desired PdIV species, due to their rigid,
bidentate structures8–10 and the fact that they contribute two
electron-donating σ-aryl ligands to the high oxidation state Pd
Our group has recently reported a Pd-catalyzed reaction for
the ligand-directed acetoxylation of carbon-hydrogen bonds
using PhI(OAc)2 as the terminal oxidant (Scheme 1).1-3 The
key carbon-oxygen coupling step of this transformation was
proposed to involve C-O bond-forming reductive elimination
from a rare, high oxidation state PdIV species of general structure
A.1,4 While analogous C-O bond-forming reductive elimination
reactions from NiIII,5 PdII,6 and PtIV 7 centers have been studied
extensively, detailed investigation of such reactions at PdIV
complexes has thus far remained elusive.8,9
(1) For directed C–H bond acetoxylation with ArI(OAc)2, see: (a) Dick,
A. R.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 2300.
(b) Desai, L. V.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004,
126, 9542. (c) Kalyani, D.; Sanford, M. S. Org. Lett. 2005, 7, 4149.
(d) Kalberer, E. W.; Whitfield, S. R.; Sanford, M. S. J. Mol. Catal.,
A 2006, 251, 108. (e) Desai, L. V.; Stowers, K. J.; Sanford, M. S.
J. Am. Chem. Soc. 2008, 130, 13285.
(2) For examples of directed C–H bond acetoxylation with other oxidants,
see: (a) Giri, R.; Liang, J.; Lei, J. G.; Li, J. J.; Wang, D. H.; Chen,
X.; Naggar, I. C.; Guo, C.; Foxman, B. M.; Yu, J. Q. Angew. Chem.,
Int. Ed. 2005, 44, 7420. (b) Desai, L. V.; Malik, H. A.; Sanford, M. S.
Org. Lett. 2006, 8, 1141. (c) Reddy, B. V. S.; Reddy, L. R.; Corey,
E. J. Org. Lett. 2006, 8, 3391. (d) Wang, G. W.; Yuan, T. T.; Wu,
X. L. J. Org. Chem. 2008, 73, 4717.
(6) (a) Komiya, S.; Akai, Y.; Yamamoto, T.; Yamamoto, A. Organome-
tallics 1985, 4, 1130. (b) Mann, G.; Hartwig, J. F. J. Am. Chem. Soc.
1996, 118, 13109. (c) Widenhoefer, R. A.; Zhong, H. A.; Buchwald,
S. L. J. Am. Chem. Soc. 1997, 119, 6787. (d) Widenhoefer, R. A.;
Buchwald, S. L. J. Am. Chem. Soc. 1998, 120, 6504. (e) Mann, G.;
Incarvito, A. L.; Rheingold, A. L.; Hartwig, J. F. J. Am. Chem. Soc.
1999, 121, 3224. (f) Shelby, Q.; Katoaka, N.; Mann, G.; Hartwig,
J. F. J. Am. Chem. Soc. 2000, 122, 10718. (g) Mann, G.; Shelby, Q.;
Roy, A. H.; Hartwig, J. F. Organometallics 2003, 22, 2775. (h)
Stambuli, J. P.; Weng, Z.; Incarvito, C. D.; Hartwig, J. F. Angew.
Chem., Int. Ed. 2007, 46, 7674.
(3) For examples of other PdII/IV-catalyzed acetoxylation reactions using
PhI(OAc)2, see: (a) Alexanian, E. J.; Lee, C.; Sorensen, E. J. J. Am.
Chem. Soc. 2005, 127, 7690. (b) Liu, G.; Stahl, S. S. J. Am. Chem.
Soc. 2006, 128, 7179. (c) Desai, L. V.; Sanford, M. S. Angew. Chem.,
Int. Ed. 2007, 46, 5737. (d) Li, Y.; Song, D.; Dong, V. M. J. Am.
Chem. Soc. 2008, 130, 2962.
(7) (a) Williams, B. S.; Holland, A. W.; Goldberg, K. I. J. Am. Chem.
Soc. 1999, 121, 252. (b) Williams, B. S.; Goldberg, K. I. J. Am. Chem.
Soc. 2001, 123, 2576. (c) Vedernikov, A. N.; Binfield, S. A.; Zavalij,
P. Y.; Khusnutdinova, J. R. J. Am. Chem. Soc. 2006, 128, 82. (d)
Khusnutdinova, J. R.; Zavalij, P. Y.; Vedernikov, A. N. Organome-
tallics 2007, 26, 3466. (e) Khusnutdinova, J. R.; Newman, L. L.;
Zavalij, P. Y.; Lam, Y.-F.; Vedernikov, A. N. J. Am. Chem. Soc. 2008,
130, 2174. (f) Smythe, N. A.; Grice, K. A.; Williams, B. S.; Goldberg,
K. I. Organometallics 2009, 28, 277.
(4) A related mechanism was also proposed for the Pd(OAc)2-catalyzed
acetoxylation of benzene with PhI(OAc)2. See: Yoneyama, T.;
Crabtree, R. H. J. Mol. Catal. A 1996, 108, 35.
(5) (a) Matsunaga, P. T.; Hillhouse, G. K. J. Am. Chem. Soc. 1993, 115,
2075. (b) Matsunaga, P. T.; Mavropoulos, J. C.; Hillhouse, G. K.
Polyhedron 1995, 14, 175. (c) Han, R.; Hillhouse, G. L. J. Am. Chem.
Soc. 1997, 119, 8135. (d) Koo, K.; Hillhouse, G. L. Organometallics
1998, 17, 2924.
9
10974 J. AM. CHEM. SOC. 2009, 131, 10974–10983
10.1021/ja9014474 CCC: $40.75 2009 American Chemical Society