A R T I C L E S
Yamagiwa et al.
Table 1. Optimization of Catalytic Asymmetric Aza-Michael
Reaction of 2a with 3a
catalyst
time
(h)
yield
(%)
ee
entry
additive
(x mol %)
(%)
1
2
3
4
5
6
7
8
9
none
10
10
10
10
10
10
5
3
1
0.5
0.3
1
24
24
24
24
24
24
42
42
48
80
80
48
94
29
85
67
44
94
94
97
95
96
96
98
97
93
96
96
97
97
96
95
96
96
92
95
H2Ob
MS 3 Å
MS 4 Å
MS 5 Å
Drierite
Drierite
Drierite
Drierite
Drierite
Drierite
Drierite
Figure 2. Working hypothesis of Lewis acid-Lewis acid cooperative
catalysis in enantioselective 1,4-addition of alkoxylamine.
R,â-unsaturated carbonyl compounds provides a direct and
attractive strategy for the construction of optically active
â-amino carbonyl compounds,5-8 which are often found in
biologically interesting compounds. Among them, a few highly
enantioselective Lewis acid catalyses for 1,4-additions of
O-alkylhydroxylamines were recently reported,7 providing
versatile chiral building blocks. The products were readily
transformed into chiral aziridines. We hypothesized that the
oxygen atom of O-alkylhydroxylamine would coordinate to the
alkali metal of a heterobimetallic complex without a significant
decrease in the nucleophilicity of nitrogen (Figure 2). Here we
report the complete details of our trials to utilize the heterobi-
metallic complex in Lewis acid-Lewis acid cooperative ca-
talysis for enantioselective 1,4-addition of methoxylamine. The
(S,S,S)-YLi3tris(binaphthoxide) complex (YLB 1a, Figure 1)
efficiently promoted the addition of methoxylamine to enones.
The substrate scope was further broadened to R,â-unsaturated
carboxylic acid derivatives using R,â-unsaturated N-acylpyrroles
as substrates. The mechanistic studies of the reaction to verify
10
11
12a
a Reaction was performed in 10 g scale at 2.1 M. b30 mol % of H2O
was added.
the Lewis acid-Lewis acid bifunctional reaction mode are also
described in detail.
Results and Discussion
A. Addition to Enones.9 Initially, we screened various
heterobimetallic complexes containing rare earth metals and
alkaline metals for the addition of 3a to 2a, and YLB 1a gave
the best reactivity and enantioselectivity.10 The reaction pro-
ceeded smoothly with 10 mol % of 1a at -20 °C to give 4a in
94% yield and 97% ee (Table 1, entry 1). In contrast to the
catalytic asymmetric ethoxycarbonylation reaction of aldehydes
using the YLB-H2O complex,11,12 the addition of H2O some-
what retarded the reaction. Anhydrous conditions gave the best
reaction rate, although H2O had no adverse effects on enanti-
oselectivity (entry 1 vs entry 2).10 We speculated that even a
small amount of H2O derived from a possible side reaction
(oxime formation) would be problematic for reducing the
catalyst loading. Thus, various desiccants were screened (entries
3-6), and Drierite (CaSO4) gave the best results (entry 6).13
The low chemical yield produced using molecular sieves (entries
3-5) is due to the absorption of methoxylamine to the molecular
sieves.13 Under the optimal conditions (YLB, 3a: 1.2 equiv,
Drierite), catalyst loading was reduced. As summarized in entries
7-11, the reaction proceeded without any problem with as little
as 0.5-1 mol % of 1a, giving 4a in good yield and ee (entry 9,
(4) For selected recent examples of other bifunctional chiral metal catalysis,
see: (a) France, S.; Shah, M. H.; Weatherwax, A.; Wack, H.; Roth, J. P.;
Lectka, T. J. Am. Chem. Soc. 2005, 127, 1206. (b) Knudsen, K. R.;
Jørgensen, K. A. Org. Biomol. Chem. 2005, 3, 1362. (c) Kanemasa, S.;
Ito, K. Eur. J. Org. Chem. 2004, 4741. (d) Evans, D. A.; Seidel, D.;
Rueping, M.; Lam, H. W.; Shaw, J. T.; Downey, C. W. J. Am. Chem. Soc.
2003, 125, 12692. (e) Sammis, G. M.; Danjo, H.; Jacobsen, E. N. J. Am.
Chem. Soc. 2004, 126, 9928. (g) Josephsohn. N. S.; Kuntz, K. W.; Snapper,
M. L.; Hoveyda, A. M. J. Am. Chem. Soc. 2001, 123, 11594. (h) Trost, B.
M.; Terrell, L. R. J. Am. Chem. Soc. 2003, 125, 338 and references therein.
(i) Matsunaga, S.; Yoshida, T.; Morimoto, H.; Kumagai, N.; Shibasaki,
M. J. Am. Chem. Soc. 2004, 126, 8777 and references therein. For other
examples, see review in refs 1-3.
(5) Reviews for enantioselective conjugate addition: (a) Sibi, M. P.; Manyem,
S. Tetrahedron 2000, 56, 8033. (b) Krause, N.; Hoffmann-Ro¨der, A.
Synthesis 2001, 171.
(6) Review for aza-Michael reaction: Xu, L.-W.; Xia, C.-G. Eur. J. Org. Chem.
2005, 633.
(7) Alkoxyamines as nucleophiles: (a) Sibi, M. P.; Shay, J. J.; Liu, M.; Jasperse,
C. P. J. Am. Chem. Soc. 1998, 120, 6615. (b) Jørgensen, K. A.; Falborg,
L. J. Chem. Soc., Perkin Trans. 1 1996, 2823. (c) Sugihara, H.; Daikai,
K.; Jin, X. L.; Furuno, H.; Inanaga, J. Tetrahedron Lett. 2002, 43, 2735.
(d) Jin, X. L.; Sugihara, H.; Daikai, K.; Takeishi, H.; Jin, Y. Z.; Furuno,
H.; Inanaga, J. Tetrahedron 2002, 58, 8321. (e) Cardillo, G.; Gentilucci,
L.; Gianotti, M.; Kim, H.; Perciaccante, R.; Tolomelli, A. Tetrahedron:
Asymmetry 2001, 12, 2395.
(9) A part of this article (addition to enones, section A) was reported previously
as a preliminary communication. Yamagiwa, N.; Matsunaga, S.; Shibasaki,
M. J. Am. Chem. Soc. 2003, 125, 16178.
(10) Effects of rare earth metals and alkali metals on the reaction rate and
enantioselectivity are described in detail in section D. Adverse effects of
H2O are also discussed in detail in section D.
(8) For recent highly enantioselective catalytic asymmetric 1,4-additions of
other nitrogen nucleophiles to afford â-amino carbonyl compounds, see:
N-Benzylhydroxylamine: (a) Sibi, M. P.; Prabagaran, N.; Ghorpade, S.
G.; Jasperse, C. P. J. Am. Chem. Soc. 2003, 125, 11796 and references
therein. Aromatic amine: (b) Zhuang, W.; Hazell, R. G.; Jørgensen, K. A.
Chem. Commun. 2001, 1240. (c) Fadini, L.; Togni, A. Chem Commun.
2003, 30. (d) Li, K.; Hii, K. K. Chem Commun. 2003, 1132. (e) Li, K.;
Cheng, X.; Hii, K. K. Eur. J. Org. Chem. 2004, 959. (f) Hamashima, Y.;
Somei, H.; Shimura, Y.; Tamura, T.; Sodeoka, M. Org. Lett. 2004, 6, 1861.
Azide ion: (g) Myers, J. K.; Jacobsen, E. N. J. Am. Chem. Soc. 1999, 121,
8959. (h) Guerin, D. J.; Miller, S. J. J. Am. Chem. Soc. 2002, 124, 2134.
Carbamate: (i) Palomo, C.; Oiarbide, M.; Halder, R.; Kelso, M.; Go´mez-
Bengoa, E.; Garc´ıa, J. M. J. Am. Chem. Soc. 2004, 126, 9188. For ligand-
controlled asymmetric addition of lithium amide, see: (j) Doi, H.; Sakai,
T.; Iguchi, M.; Yamada, K.-i.; Tomioka, K. J. Am. Chem. Soc. 2003, 125,
2886 and references therein.
(11) In the asymmetric cyanation reaction, YLB-H2O complex was essential
to achieve good reactivity and enantioselectivity. Anhydrous YLB 1a
complex gave cyanation adducts in poor ee; see: (a) Yamagiwa, N.; Tian,
J.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2005, 127, 3413. (b)
Tian, J.; Yamagiwa, N.; Matsunaga, S.; Shibasaki, M. Angew. Chem., Int.
Ed. 2002, 41, 3636. (c) Tian, J.; Yamagiwa, N.; Matsunaga, S.; Shibasaki,
M. Org. Lett. 2003, 5, 3021. (d) Abiko, Y.; Yamagiwa, N.; Sugita, M.;
Tian, J.; Matsunaga, S.; Shibasaki, M. Synlett 2004, 2434.
(12) For preparation and characterization of the structure of anhydrous YLB:
(a) Aspinall, H. C.; Dwyer, J. L. M.; Greeves, N.; Steiner, A. Organome-
tallics 1999, 18, 1366. (b) Aspinall, H. C.; Bickley, J. F.; Dwyer, J. L. M.;
Greeves, N.; Kelly, R. V.; Steiner, A. Organometallics 2000, 19, 5416.
(13) Ability of Drierite as desiccant toward THF was checked by Karl Fisher
experiment. See Supporting Information. Absorption of methoxylamine 3a
to molecular sieves was confirmed by NMR analysis of methoxylamine
solution in THF using 2,4,6-trimethylbenzene as an internal standard.
9
13420 J. AM. CHEM. SOC. VOL. 127, NO. 38, 2005