C O M M U N I C A T I O N S
Scheme 2. Synthesis of â-Amino Alcohols
Table 2. Asymmetric Mannich Reactions of â-Keto Ester 3aa
entry
Ar
% yieldb
drc
yield (%)d
% eee
1
2
Ph
99
93
98
98
96
99
95
81
84
96
3:1
1:1
1:1
1:1
1:1
1:1
1:1
1:1
1:1
5:1
7a (80)
7b (80)
7c (97)
7d (84)
7e (81)
7f (83)
7g (81)
7h (96)
7i (82)
7j (83)
92
83
93
91
96
90
80
93
92
95
TMSI in CH3CN followed by treatment with MeOH to yield amino
alcohol 10 (86% over three steps).
4-Cl-C6H4
3
4-F-C6H4
4
3-F-C6H4
In summary, we have developed a diastereo- and enantioselective
direct Mannich reaction of â-keto esters to acyl aryl imines
catalyzed by cinchonine and cinchonidine. We have used the
products from the reaction in the synthesis of enantioenriched
dihydropyrimidones and â-amino alcohols. Ongoing investigations
include the expansion of the current methodology and synthetic
utility of the products.
5
3-CH3-C6H4
3-CF3-C6H4
3,4-(OCH2O)C6H3
2-C4H3O
6
7
8
9
2-C4H3S
2-naphthyl
10
a Mannich reactions were carried out using 0.5 mmol ester 3, 0.5 mmol
imine 6, and 0.05 mmol cinchonine 1 in CH2Cl2 (0.5 M) at -35 °C for 16
h under Ar, followed by flash chromatography on silica gel. b Isolated yield
of Mannich reaction product. c Determined by 1H NMR analysis. d Isolated
yield of 7. e Enantiomeric excess of 7 determined by chiral HPLC analysis.
Acknowledgment. The authors thank Mettler Toledo (Colum-
bus, OH) for assistance with instrumentation, and Synthematix, Inc.
(Durham, NC) for assistance with chemical reaction planning
software. This research was supported by an award from Amgen,
Inc., an NSF CAREER grant (CHE-0349206), and the NIGMS
CMLD initiative (P50 GM067041).
Table 3. Asymmetric Mannich Reactions of â-Keto Ester 3ba
Supporting Information Available: Experimental procedures,
characterization data, and chiral chromatographic analysis. This material
% yieldb
drc
yield (%)d
% eee
References
entry
Ar
(1) (a) Kleinmann, E. F. In ComprehensiVe Organic Synthesis; Trost, B. M.,
Flemming, I., Eds.; Pergamon Press: New York, 1991; Vol. 2, Chapter
4.1. (b) EnantioselectiVe Synthesis of â-Amino Acids; Juaristi, E., Ed.;
Wiley-VCH: New York, 1997. (c) Magriotis, P. A. Angew. Chem., Int.
Ed. 2001, 113, 4507. (d) Liu, M.; Sibi, M. P. Tetrahedron 2002, 58, 7991.
(e) Sewald, N. Angew. Chem., Int. Ed. 2003, 42, 5794. (f) Ma, J.-A. Angew.
Chem., Int. Ed. 2003, 42, 4290.
(2) (a) List, B.; Pojarliev, P.; Biller, W. T.; Martin, H. J. J. Am. Chem. Soc.
2002, 124, 827. (b) Co´rdova, A.; Notz, W.; Zhong, G.; Betancort, J. M.;
Barbas, C. F., III. J. Am. Chem. Soc. 2002, 124, 1842. (c) Zhuang, W.;
Sabby, S.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2004, 43, 4476. (d)
Marigo, M.; Kjaersgaard, A.; Juhl, K.; Gathergood, N.; Jørgensen, K. A.
Chem.sEur. J. 2003, 9, 2359. (e) Trost, B. M.; Terrell, L. R. J. Am. Chem.
Soc. 2003, 125, 338. (f) Bernardi, L.; Gothelf, A. S.; Hazell, R. G.;
Jørgensen, K. A. J. Org. Chem. 2003, 68, 2583. (g) Hayashi, Y.; Tsuboi,
W.; Ashimine, I.; Urushima, T.; Shoji, M.; Sakai, K. Angew. Chem., Int.
Ed. 2003, 42, 3677. (h) Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004,
126, 5356. (i) Matsunaga, S.; Yoshida, T.; Morimoto, H.; Kumagai, N.;
Shibasaki, M. J. Am. Chem. Soc. 2004, 126, 8777.
1
2
3
4
5
6
7
8
Ph
99
81
87
99
88
83
86
95
20:1f
10:1
10:1
1:1
8a (95)
8b (83)
8c (82)
8d (82)
8e (96)
8f (84)
8g (88)
8h (96)
94
81
91
92
90
90
93
94
4-Cl-C6H4
4-F-C6H4
3-F-C6H4
3-CH3-C6H4
2-C4H3O
1:1
1:1
1:1
20:1
2-C4H3S
2-naphthyl
a Mannich reactions were carried out using 0.5 mmol ester 3, 0.5 mmol
imine 6, and 0.05 mmol cinchonine 1 in CH2Cl2 (0.5 M) at -35 °C for 16
h under Ar, followed by flash chromatography on silica gel. b Isolated yield
of Mannich reaction product. c Determined by 1H NMR analysis. d Isolated
yield of 8. e Enantiomeric excess of 8 determined by chiral HPLC analysis.
f The major isomer is (1R,2S).
Scheme 1. Synthesis of Enantioenriched Dihydropyrimidone
(3) Reviews: (a) Kobayashi, S.; Ishitani, H. Chem. ReV. 1999, 99, 1069. (b)
Denmark, S.; Nicaise, J.-C. In ComprehensiVe Asymmetric Catalysis;
Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin, 1999;
Vol. 2, p 954. (c) Benaglia, M.; Cinquini, M.; Cozzi, F. Eur. J. Org.
Chem. 2000, 4, 563. (d) Co´rdova, A. Acc. Chem. Res. 2004, 37, 102.
(4) Hamashima, Y.; Sasamoto, N.; Hotta, D.; Somei, H.; Umebayashi, N.;
Sodeoka, M. Angew. Chem., Int. Ed. 2005, 44, 1525.
(5) Poulsen, T. B.; Alemparte, C.; Saaby, S.; Bella, M.; Jørgensen, K. A.
Angew. Chem., Int. Ed. 2005, 44, 2896.
(6) Reviews: (a) Chen, Y.; McDaid, P.; Deng, L. Chem. ReV. 2003, 103,
2965. (b) France, S.; Guerin, D. J.; Miller, S. J.; Lectka, T. Chem. ReV.
2003, 103, 2985. (c) Tian, S.-K.; Chen, Y. G.; Hang, J. F.; Tang, L.;
McDaid, P.; Deng, L. Acc. Chem. Res. 2004, 37, 621.
(7) (a) Hang, J.; Tian, S.-K.; Tang, L.; Deng, L. J. Am. Chem. Soc. 2001,
123, 12696. (b) Hang, J.; Li, H.; Deng, L. Org. Lett. 2002, 4, 3321. (c)
Tang, L.; Deng, L. J. Am. Chem. Soc. 2002, 124, 2870.
merited exploration. We first considered 5e as starting material for
the asymmetric synthesis of dihydropyrimidones (Scheme 1).15
Although dihydropyrimidones are useful biological and pharma-
cological research tools, few procedures exist for their construction
in enantioenriched form.15b,16
Treatment of 5e with catalytic Pd(PPh3)4 and dimethyl barbituric
acid as the allyl scavenger in the presence of benzyl isocyanate
afforded the corresponding unsymmetrical urea in 85% isolated
yield. Ring closure to the pyrimidone was promoted by AcOH in
EtOH under microwave conditions to afford the 5-benzyl pyrimi-
done 8 in 95% yield and 90% ee.
(8) (a) Tian, S.-K.; Hong, R.; Deng, L. J. Am. Chem. Soc. 2003, 125, 9900.
(b) Tian, S.-K.; Deng, L. J. Am. Chem. Soc. 2001, 123, 6195.
(9) Knudsen, K. R.; Jørgensen, K. A. Org. Biomol. Chem. 2005, 3, 1362.
(10) Bella, M.; Jørgensen, K. A. J. Am. Chem. Soc. 2004, 126, 5672.
(11) Vakulya, B.; Varga, S.; Csa´mpai, A.; Soo´s, T. Org. Lett. 2005, 7, 1967.
(12) Li, H.; Wang, Y.; Tang, L.; Deng, L. J. Am. Chem. Soc. 2004, 126, 9906.
(13) Li, H.; Song, J.; Liu, M.; Deng, L. J. Am. Chem. Soc. 2005, 127, 8948.
(14) Aliphatic acyl imines of this type are not readily afforded according to
the literature procedure: Vidal, J.; Damestoy, S.; Guy, L.; Hannachi, J.-
C.; Aubry, A.; Collet, A. Chem.sEur. J. 1997, 3, 1691.
(15) Prepared from the Biginelli reaction: (a) Biginelli, P. Gazz. Chim. Ital.
1893, 23, 360. Reviews: (b) Kappe, C. O.; Stadler, A. Org. React. 2004,
63, 1. (c) Kappe, C. O. Tetrahedron 1993, 49, 6937.
(16) Reviews: (a) Kappe, C. O. QSAR Comb. Sci. 2003, 22, 630. (b) Kappe,
C. O. Eur. J. Med. Chem. 2000, 35, 1043.
The diastereomerically enriched Mannich product 5d was easily
converted to the corresponding â-amino alcohol using a reduction/
deprotection sequence (Scheme 2). Reduction of 5d using Zn(BH4)2
at -78 °C afforded the amino alcohol in 95% yield and >20:1 dr.
The methyl carbamate was deprotected via a two-step process using
JA0537373
9
J. AM. CHEM. SOC. VOL. 127, NO. 32, 2005 11257