5840
J. Vicente et al. / Tetrahedron Letters 46 (2005) 5839–5840
R
R
(CTQ2004-05396); R.M.L.-N. thanks to MEC for a
grant.
SH
Br
[Pd]
S
S
Supplementary data
n-1
n
I
Br
Supplementary data associated with this article can be
(n-1)iM, (n-1)iN
nbM, nbN
[Cu]
1
procedures and H and 13C NMR spectra of the new
R
R
S
I
MeO
NO2
M
N
compounds.
References and notes
niM, niN
n
1. De Nicola, A.; Goeb, S.; Ziessel, R. Tetrahedron Lett.
2004, 44, 7963.
Scheme 2. Reagents and conditions: [Pd] = 1–10 mol% (Pd(dba)2 +
dppf) + KOtBu, toluene, 50 °C, 1–3 days; [Cu] = 8–40 mol% (CuI + 2
racemic trans-N,N0-dimethyl-1,2-cyclohexanediamine) + 2 equiv NaI,
dioxane, 140 °C, 48 h.
2. Rozalska, I.; Kulyk, P.; Kulszewicz-Bajer, I. New J. Chem.
2004, 28, 1235.
3. Dahan, A.; Weissberg, A.; Portnoy, M. Chem. Commun.
2003, 1206.
´
4. Rodrıguez, J. G.; Tejedor, J. L.; Esquivias, J.; Diaz, C.
deprotection method18 to prepare Br(C6H4-1,4)S(C6H4-
1,4)SH, which would allow growing the chains using less
steps.19 Our method is only limited by the very low solu-
bility of the longest chains. Thus the poor solubility of
4iN rules out its purification and the preparation of pure
5bN. The synthesis of a few linear or cyclic oligo(p-phen-
ylene)thioethers 4-XC6H4(SC6H4-4)nX (n = 2, X = H;
n = 4, X = Br, I)20 or (SC6H4-4)n (n = 4, 5 and 621)22
has also been reported.
Tetrahedron Lett. 2003, 44, 6375.
5. Hurst, S. K.; Cifuentes, M. P.; Humphrey, M. G.
Organometallics 2002, 21, 2353.
6. Yamamoto, K.; Higuchi, M.; Shiki, S.; Tsuruta, M.;
Chiba, H. Nature 2002, 415, 509.
7. Newkome, G. R.; He, E.; Moorefield, C. N. Chem. Rev.
1999, 99, 1689.
8. Grayson, S. M.; Frechet, J. M. J. Chem. Rev. 2001, 101,
3819.
9. van Heerbeek, R.; Kamer, P. C. J.; van Leeuwen, P. W. N.
M.; Reek, J. N. H. Chem. Rev. 2002, 102, 3717, and
references therein.
This new approach for preparing oligomers is also open
to: (1) growing chains in two or more directions using S
or other links, for example, by reacting C6HnI6ꢀn with
HX–R0–Br (X = C„C, NH, O, etc.), or HX–R0–XH
with IC6H4 Br; (2) growing long chains by transforming
R–(X–R0)n–Br into R–(X–R0)n–XH and then reacting it
with R–(X–R0)m–I; (3) if R is a protecting group, to pre-
pare chains H–(X–R0)n–Br that could be used to grow
longer chains in less steps; (4) preparing chains with
the same or different X links (X = C„C, NH, O, S,
etc.; R or/and R0 5 aryl group); (5) building molecular
wires through the catalytic Heck, Stille or Suzuki reac-
tions. Of course, it is necessary, to find the experimental
conditions allowing the coupling step to occur selec-
tively with the carbon atom bonded to I but not to Br.
In conclusion, the great flexibility of this approach
opens the way to preparing wires or dendrimers fulfilling
some desired properties.
10. Valasek, M.; Pecka, J.; Jindrich, J.; Calleja, G.; Craig, P.
R.; Michl, J. J. Org. Chem. 2005, 70, 405.
11. Dong, T.-Y.; Lin, M.-C.; Chiang, M. Y.-N.; Wu, J.-Y.
Organometallics 2004, 23, 3921.
12. Schopfer, U.; Schlapbach, A. Tetrahedron 2001, 57, 3069.
13. Hartwig, J. F. Acc. Chem. Res. 1998, 31, 852.
14. Kondo, T.; Mitsudo, T. Chem. Rev. 2000, 100, 3205.
15. The name of the compounds indicates the number of
C6H4S groups, n, followed by b or i when the compound is
a bromo or iodo derivative, and M or N when R = MeO
or NO2, respectively.
16. Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124,
14844.
17. Pinchart, A.; Dallaire, C.; Gingras, M. Tetrahedron Lett.
1998, 39, 543.
18. Pinchart, A.; Dallaire, C.; Van Bierbeek, A.; Gingras, M.
Tetrahedron Lett. 1999, 40, 5479.
19. Compound Br(C6H4-1,4)S(C6H4-1,4)SMe was obtained
by reacting I(C6H4)SMe-4 with BrC6H4SH-4 under the
same conditions used for 1bM.
20. Tsuchida, E.; Yamamoto, K.; Oyaizu, K.; Suzuki, F.;
Hay, A. S.; Wang, Z. Y. Macromolecules 1995, 28, 409.
21. Franke, J.; Vo¨gtle, F. Tetrahedron Lett. 1984, 25, 3445.
22. Kaplan, M. L.; Reents, W. D., Jr. Tetrahedron Lett. 1982,
23, 373.
Acknowledgements
We thank the financial support of Ministerio de Edu-
´
cacion
y
Ciencia (MEC), Spain and FEDER