N-Acylanilines as CHAs for Wheat
J. Agric. Food Chem., Vol. 54, No. 18, 2006 6803
Table 2. Spectral Data (1H NMR and EI
−MS) of N-Acylanilines
compd no.a
1H NMR (
δ, ppm)
EI−MS m/z (relative intensity, %)
+
1
1.23 (t, J
)
6 Hz, 3H, CH3), 3.46 (s, 2H, CH2), 4.15 (q, J
)
6 Hz, 2H,
225 (M , 30), 180 (4), 111 (100), 110 (11),
109 (4), 95 (4), 83 (12), 75 (2), 69 (2)
OCH2), 7.11 (t, J 6 Hz, 2H, Hb and Hb , aromatic), 7.64 (dd,
6 Hz, 2H, Ha and Ha aromatic), 9.70 (s, 1H, NH)
1.40 (t, J 6 Hz, 3H, CH3), 3.45 (s, 2H, CH2), 4.40 (q, J
OCH2), 7.35 (m, 1H, Hb aromatic), 7.50 (m, 2H, Ha , Hb aromatic),
7.60 (m, 1H, Ha aromatic), 9.80 (s, 1H, NH)
)
′
J
)
′
+
2
)
)
6 Hz, 2H,
286 (M , 9), 241 (82), 240 (4), 201 (10),
′
′
200 (3), 199 (11), 198 (3), 174 (96),
172 (100), 171 (3), 156 (2), 146 (4),
145 (5), 75 (3), 69 (2), 65 (6), 64 (3)
+
3
4
1.20 (t, J
OCH2), 6.90 (t, J
6 Hz, 2H, Ha and Ha
1.21 (t, J 6 Hz, 3H, OCH2CH3), 3.89 (s, 3H, OCH3), 3.56 (s, 2H,
CH2), 4.0 (q, J 6 Hz, 2H, OCH2CH3), 6.95 (m, 1H, Hb aromatic),
7.01 (m, 1H, Hc aromatic), 7.07 (m, 1H, Hb aromatic), 8.34 (dd, 1H,
Ha aromatic), 9.52 (s, 1H, NH)
0.75 (t, J 6 Hz, 3H, OCH2CH3), 3.23 (s, 3H, OCH3), 3.15 (s, 2H,
)
6 Hz, 3H, CH3), 3.45 (s, 2H, CH2), 4.13 (q, J
6 Hz, 2H, Hb and Hb , aromatic), 7.55 (dd,
aromatic), 9.90 (s, 1H, NH)
)
6 Hz, 2H,
208 (M , 7), 162 (7), 121 (13), 94 (100),
)
′
93 (28), 78 (7), 65 (10)
J
)
′
+
)
237 (M , 38), 192 (7), 150 (6), 135 (4),
)
124 (9), 123 (100), 120 (7), 108 (67),
92 (7), 80 (11), 6.5 (14)
′
′
+
5
)
237 (M , 37.4), 192 (8.5), 149 (10.8),
CH2), 3.75 (q, J
6.55 (m, 1H, Hb
7.50 (m, 1H, Ha
)
6 Hz, 2H, OCH2), 6.40 (m, 1H, Hc aromatic),
aromatic), 6.90 (m, 1H, Ha aromatic),
aromatic), 8.55 (s, 1H, NH)
135 (4.6), 123 (100), 120 (9.2), 108 (70.0),
80 (11.5), 77 (4.6), 65 (13.8)
′
′
′
6
7
8
1.50 (t, J
OCH2), 7.40 (m, 1H, Hc aromatic), 7.80 (m, 1H, Hb
(t, 1H, Hb aromatic), 9.10 (t, 1H, Ha aromatic), 10.30 (s, 1H, NH)
2.45 (s, 3H, COCH3), 3.70 (s, 2H, CH2CO), 7.25 (dd, J 6 Hz, 2H,
b , Hb aromatic), 7.70 (dd, J 6 Hz, 2H, Ha, Ha aromatic),
9.50 (s, 1H, NH)
)
6 Hz, 3H, CH3), 4.20 (s, 2H, CH2), 4.55 (q, J
)
6 Hz, 2H,
unstable
′
aromatic), 8.50
′
+
)
195 (M , 1), 123 (11), 110 (3), 98 (8),
H
′
)
′
97 (100), 83 (4), 69 (12)
+
3.00 (s, 3H, COCH3), 3.00 (s, 2H, CH2CO), 7.40 (m, 3H, Hb, Hb
′
, Ha
′
256 (M , 2), 222 (21), 221 (7), 199 (3),
aromatic), 7.60 (m, 1H, Ha aromatic), 10.05 (s, 1H, NH)
172 (100), 156 (13), 138 (22), 93 (8),
66 (8), 64 (3)
+
9
2.20 (s, 3H, COCH3), 3.40 (s, 2H, CH2CO), 6.95 (m, 3H, Hb, Hb
′
, Hc
177 (M , 1), 143 (9), 142 (2), 120 (6),
aromatic), 7.55 (m, 2H, Ha, Ha
′
aromatic), 9.90 (s, 1H, NH)
93 (100), 92 (6), 77 (23), 65 (1)
+
10
2.45 (s, 2H, CH2CO), 3.75 (s, 2H, CH2CO), 7.35 (m, 1H, Hc aromatic),
211 (M , 8), 177 (5), 176 (38), 129 (31),
7.60 (m, 2H, Hb, Hb
′
aromatic), 8.60 (m, 1H, Ha aromatic), 9.93
127 (100), 99 (8), 92 (6), 91 (5), 85 (7),
75 (4), 71 (4), 69 (6), 65 (7), 63 (8)
(s, 1H, NH)
11
2.35 (s, 3H, COCH3), 3.50 (s, 2H, CH2CO), 7.40 (m, 1H, Hc aromatic),
unstable
7.50 (m, 1H, Hb′, Ha aromatic), 7.65 (m, 1H, Ha aromatic), 9.40
(s, 1H, NH)
+
12
13
2.50 (s, 3H, COCH3), 3.72 (s, 2H, CH2CO), 7.60 (m, 2H, Hb, Hb
aromatic), 7.80 (m, 2H, Ha, Ha aromatic), 9.60 (s, 1H, NH)
2.40 (s, 3H, COCH3), 3.70 (s, 2H, CH2CO), 7.40 (m, 1H, Hc aromatic),
7.55 (m, 2H, Hb , Ha aromatic), 7.90 (m, 1H, Ha aromatic),
9.60 (s, 1H, NH)
1.35 (s, 3H, ArCH3), 2.45 (s, 3H, COCH3), 3.70 (s, 2H, CH2CO), 7.20
(m, 1H, Hc aromatic), 7.40 (m, 1H, Hb aromatic), 7.50 (m, 2H, Ha,
Ha aromatic), 9.60 (s, 1H, NH)
2.12 (s, 3H, COCH3), 7.10 (t, 2H, Hb, Hb
Ha aromatic), 10.00 (s, 1H, NH)
4.05 (s, 2H, CH2Cl), 7.10 (m, 2H, Hb, Hb
a aromatic), 9.95 (s, 1H, NH)
4.05 (s, 2H, CH2Cl), 7.15 (m, 2H, Hb, Hb
a aromatic), 10.05(s, 1H, NH)
4.10 (s, 2H, CH2Cl), 7.20 (m, 2H, Hb, Hb
a aromatic), 8.30 (s, 1H, NH)
5.80 (s, 1H, CHCl2), 6.80 (m, 2H, Hb and Hb
′
211 (M , 0.29), 196 (5), 154 (5), 153 (6),
′
127 (100), 111 (4), 93 (6), 92 (6), 65 (10)
+
222 (M , 2), 138 (100), 122 (2), 121 (13),
′
′
108 (14), 104 (13), 92 (2), 65 (12)
+
14
191 (M , 1), 157 (13), 156 (7), 147 (9),
′
134 (11), 107 (100), 92 (16), 91 (22),
73 (5), 65 (9)
′
+
15
16
17
18
19
20
21
22
′
′
′
′
aromatic), 7.65 (dd, 2H, Ha,
aromatic), 7.50 (m, 2H, Ha,
aromatic), 7.50 (m, 2H, Ha,
aromatic), 7.40 (m, 2H, Ha,
153 (M , 12), 138 (29), 111 (100), 110 (9),
′
78 (26), 77 (67), 65 (58)
+
187 (M , 2), 138 (30), 124 (12), 111 (100),
H
′
110 (69), 78 (11), 77 (75), 65 (81), 64 (15)
+
248 (M , 6), 199 (21), 185 (8), 172 (100),
H
′
171 (71), 79 (5), 78 (59), 66 (63), 65 (6)
+
169 (M , 1), 120 (25), 106 (14), 93 (100),
H
′
92 (61), 78 (18), 77 (85), 65 (95), 63 (28)
+
′
′
′
aromatic), 7.20 (m, 2H,
aromatic), 7.20 (m, 2H,
aromatic), 7.30 (m, 2H,
222 (M , 5), 159 (5), 151(7), 139 (28),
H
a and Ha
′
aromatic), 8.10 (s ,1H, NH)
111 (80), 110 (8), 84 (100), 77 (28)
+
5.85 (s, 1H, CHCl2), 6.85 (m, 2H, Hb and Hb
282 (M , 3), 171 (80), 170 (12), 156 (118),
H
a and Ha
5.90 (s, 1H, CHCl2), 6.70 (m, 2H, Hc and Hb
b and Ha
4.40 (s, 1H, CHCl2), 6.60 (m, 2H, Hb and Hb
Ha aromatic), 8.10 (s, 1H, NH)
7.00 (m, 4H, aromatic), 9.80 (s, 1H, NH)
′
aromatic), 8.15 (s ,1H, NH)
146 (21), 144 (100), 137 (30), 136 (11)
+
204 (M , 3), 120 (12), 93 (62), 92 (8),
H
′
aromatic), 7.80 (m, 1H, Ha aromatic), 8.65 (s, 1H, NH)
aromatic), 7.25 (m, 1H,
78 (9), 68 (21), 66 (100), 59 (29), 58 (7)
unstable
′
′
+
23
24
257 (M , 7), 169 (22), 119 (37), 111 (100)
+
7.00 (m, 2H, Hb and Hb
′
aromatic), 7.05 (m, 2H, Ha and Ha
′
aromatic),
317 (M , 6), 283 (18), 248 (15), 201 (41),
9.85 (s, 1H, NH)
199 (8), 190 (100), 189 (10), 110 (17),
77 (12), 65 (3)
25
6.95 (m, 4H, aromatic), 8.90 (s, 1H, NH
unstable
a The identity of the compound number was mentioned under Table 1.
variability in the acyl side chain, the descriptor variables, viz., π,
molecular weight (MW), MR, and parachor (P) (ACD Chemsketch,
version 2.0) were taken (16). The “agrophore” data, viz., percent
induction of spikelet sterility (SS) caused by test CHAs tested at 1500
ppm were transferred into sin arc and used as the dependent variable
(SS % sin arc). The descriptor variables were used to generate multiple
regression equations (MLR) by autocorrelation using the computer
software package SPSS (version 10.0) program. None of the indepen-
dent variables appearing in the equations was ensured to be orthogonal.
Statistical Analyses. Analysis of variance (ANOVA) of factorial