722
J. G. Catalano et al. / Bioorg. Med. Chem. Lett. 14 (2004) 719–722
membrane permeability in the Madin–Darby canine
kidney cell monolayer assay (PAPP=57ꢃ4 nm/s).28 Not
surprising given the low solubility, 5u had poor oral
bioavailability (F=3%) in rats.
9. Adang, A. E. P.; de Man, A. P. A.; Vogel, G. M. T.;
Grootenhuis, P. D. J.; Smit, M. J.; Peters, C. A. M.; Vis-
ser, A.; Rewinkel, J. B. M.; van Dinther, T.; Lucas, H.;
Kelder, J.; van Aelst, S.; Meuleman, D. G.; van Boeckel,
C. A. A. J. Med. Chem. 2002, 45, 4419.
10. Harbeson, S. L.; Abelleira, S. M.; Akiyama, A.; Barrett,
R., III; Carroll, R. M.; Straub, J. A.; Tkacz, J. N.; Wu,
C.; Musso, G. F. J. Med. Chem. 1994, 37, 2918.
11. Beevers, R.; Carr, M. G.; Jones, P. S.; Jordan, S.; Kay,
P. B.; Lazell, R. C.; Raynham, T. M. Bioorg. Med. Chem.
Lett. 2002, 12, 641.
12. Lubisch, W.; Beckenbach, E.; Bopp, S.; Hofmann, H.-P.;
Kartal, A.; Kaestel, C.; Lindner, T.; Metz-Garrecht, M.;
Reeb, J.; Regner, F.; Vierling, M.; Moeller, A. J. Med.
Chem. 2003, 46, 2404.
This analogues poor oral bioavailability precluded a
chronic pharmacodynamic study in the OVX rat. How-
ever 5u was profiled in the ex vivo rat calvaria resorption
assay, a model often predictive of anti-resorptive activ-
ity.29,30 As shown in Figure 1, treatment with parathyroid
hormone enhanced bone resorption as measured by
deoxypyridinoline (DPD) crosslinks release. Analogue 5u
dose-dependently attenuated this release of DPD cross-
links from type I collagen in the rat calvaria resorption
assay. This efficacy reached statistical significance at the
3000 nM dose (2 sided t-test, p=0.03). Thus, this ketoa-
mide cathepsin K inhibitor acts as an antiresorptive agent
by attenuating type I collagen hydrolysis in bone.
13. All of the amines were commercially available.
14. Wasserman, H. H.; Petersen, A. K. Tetrahedron Lett.
1997, 38, 953.
15. Most alcohols were commercially available. Addition of
phenyl acetylene to pivaldehyde, followed by hydrogena-
tion of the triple bond gave the known racemic alcohol
utilized to make analogues 5o and 5p. The enantiomers
were separated via chiral HPLC. Addition of phenpropyl
magnesium bromide to pivaldehyde gave the racemic
alcohol utilized to make analogues 5q and 5r. The enan-
tiomers were separated via chiral HPLC. Cyclopentyl
magnesium bromide addition to ethyl formate gave the
achiral alcohol utilized to make analogue 5x.
16. Semple, J. E.; Owens, T. D.; Nguyen, K.; Levy, O. E. Org.
Lett. 2000, 2, 2769.
17. Prasad, J. V. N. V.; Rich, D. H. Tetrahedron Lett. 1990,
31, 1803.
18. The known isonitrile 11 was synthesized from (R)-(+)-1-
phenylethylamine, employing the phase transfer catalyzed
modification of the classical Hofmann carbylamine
synthesis.
In summary, this report highlights the discovery of a
potent series of cathepsin K inhibitors. Starting from
the directed screening hit 2, the aldehyde warhead was
replaced with a more drug-like ketoamide electrophile.
The resulting drop in potency was recovered and
enhanced via modifications to the P1 , P2 and P3 sub-
0
stituents. In addition, a representative inhibitor in this
ketoamide series was efficacious in attenuating bone
resorption in a surrogate assay of osteoporosis. Sub-
sequent reports will detail efforts to improve the oral
bioavailability of these cathepsin K ketoamide inhibitors.
Acknowledgements
19. Weber, W. P.; Gokel, G. W.; Ugi, I. K. Angew. Chem.,
Int. Ed. Engl. 1972, 11, 530.
20. Gollnick, K.; Koegler, S.; Maurer, D. J. Org. Chem. 1992,
57, 229.
21. Somoza, J. R.; Palmer, J. T.; Ho, J. D. J. Mol. Biol. 2002,
322, 559.
The authors would like to thank Melissa A. Gomez and
Manon S. Villeneuve for chiral separations of racemic
alcohols utilized to synthesize analogues 5o–r and James
G. Conway for statistical analyses.
22. The residual potency of diastereomers 5p and 5r probably
arises from contamination of their samples with trace
amounts (ꢂ0.1% by HPLC) of the respective active dia-
stereomers 5o and 5q.
References and notes
23. McQueney, M. S.; Feild, J.; Hanning, C. R.; Brun, K.;
Ramachandran, K.; Connor, J.; Drake, F.; Jones, C. S.;
Amegadzie, B. Y. Protein Exp. Purif. 1998, 14, 387.
24. Veber, D. F.; Yamashita, D. S.; Oh, H.-J.; Smith, B. R.;
Salyers, K.; Levy, M.; Lee, C.-P.; Marzulli, A.; Smith, P.;
Tomaszek, T.; Tew, D.; McQueney, M.; Stroup, G. B.;
Lark, M. W.; James, I. E.; Gowen, M. In Peptides for the
New Millennium, Proceedings of the American Peptide
Symposium, 16th, Minneapolis, MN, United States, June
26–July 1, 1999 2000, p 453–455.
25. In rat S9, 9% of analogue 5u remained after 30 min of
incubation.
26. Dressman, J. B.; Amidon, G. L.; Reppas, C.; Shah, V. P.
Pharm. Res. 1998, 15, 11.
27. Kostewicz, E. S.; Brauns, U.; Becker, R.; Dressman, J. B.
Pharm. Res. 2002, 19, 345.
28. Irvine, J. D.; Takahashi, L.; Lockhart, K.; Cheong, J.;
Tolan, J. W.; Selick, H. E.; Grove, J. R. J. Pharm. Sci.
1999, 88, 28.
1. Einhorn, T. A. In Osteoporosis; Marcus, R., Feldman, D.,
Kelsey, J., Eds.; Academic Press Inc: San Diego, Cali-
fornia, 1996; p 3–22.
2. Yamashita, D. S.; Dodds, R. A. Curr. Pharm. Des. 2000,
6, 1.
3. Li, Z.; Hou, W.-S.; Escalante-Torres, C. R.; Gelb, B. D.;
Bromme, D. J. Biol. Chem. 2002, 277, 28669.
4. Stroup, G. B.; Lark, M. W.; Veber, D. F.; Bhattacharyya,
A.; Blake, S.; Dare, L. C.; Erhard, K. F.; Hoffman, S. J.;
James, I. E.; Marquis, R. W.; Ru, Y.; Vasko-Moser, J. A.;
Smith, B. R.; Tomaszek, T.; Gowen, M. J. Bone Miner.
Res. 2001, 16, 1739.
5. Catalano, J. G.; Deaton, D. N.; Furfine, E. S.; Hassell, A.
M.; McFadyen, R. B.; Miller, A. B.; Miller, L. R.; Shew-
chuk, L. M.; Willard, D. H., Jr.; Wright, L. L. Bioorg.
Med. Chem. Lett. 2004, 14, 275.
6. Blume, H.; Oelschlager, H. Arzneim. Forsch. 1978, 28, 956.
7. Leung-Toung, R.; Li, W.; Tam, T. F.; Karimian, K. Curr.
Med. Chem. 2002, 9, 979.
8. Jones, D. M.; Atrash, B.; Teger-Nilsson, A.-C.; Gyzan-
der, E.; Deinum, J.; Szelke, M. Lett. Pept. Sci. 1995, 2,
147.
29. Hahn, T. J.; Westbrook, S. L.; Halstead, L. R. Endocrinol.
1984, 114, 1864.
30. Conaway, H. H.; Grigorie, D.; Lerner, U. H. J. Endocri-
nol. 1997, 155, 513.