corresponding reaction in our asimicin synthesis that pro-
ceeded with g20:1 ds.7
The erythro stereochemistry of C(23)-C(24) of aldehyde
4 requires that a syn-â-silyloxy allylsilane 6 be used in a
chelate-controlled [3+2] annulation reaction with R-benzy-
loxy acetaldehyde (5). Initial attempts to develop an enan-
tioselective synthesis of syn-â-silyloxy allylsilanes related
to 6 focused on asymmetric allylboration reactions using (Z)-
γ-dimethylphenylsilyallylboronate 7 (Scheme 1). Thus, si-
Scheme 1. Synthesis of syn-â-Hydroxyallylsilanes via
Asymmetric Allylboration
Figure 2. Retrosynthetic analysis of bullatacin.
As part of ongoing studies focusing on the development
of a stereochemically general synthesis of members of the
acetogenin family, we have developed and report herein a
highly stereoselective synthesis of bullatacin (1),8 which
differs from asimicin (2) at a single stereocenter (C-24). We
envisaged that the bis-tetrahydrofuran core unit of bullatacin
could be synthesized from sequential chelate-controlled
[3+2] annulation reactions of allylsilanes 3 and 6 (Figure
2). The proposed [3+2] annulation of 3 and 4 is expected to
be a stereochemically matched double asymmetric reaction
under chelate-controlled conditions, by analogy with the
(2) Representative acetogenin total syntheses: (a) Marshall, J. A.; Jiang,
H. J. Org. Chem. 1999, 64, 971. (b) Kuriyama, W.; Ishigami, K.; Kitahara,
T. Heterocycles 1999, 50, 981. (c) Marshall, J. A.; Jiang, H. J. Nat. Prod.
1999, 62, 1123. (d) Hu, T.-S.; Wu, Y.-L.; Wu, Y. K. Org. Lett. 2000, 2,
887. (e) Emde, U.; Koert, U. Eur. J. Org. Chem. 2000, 1889. (f) Hoppen,
S.; Baurle, S.; Koert, U. Chem. Eur. J. 2000, 6, 2382. (g) Dixon, D. J.;
Ley, S. V.; Reynolds, D. J. Angew. Chem., Int. Ed. 2000, 39, 3622. (h)
Harcken, C.; Bruckner, R. New J. Chem. 2001, 25, 40. (i) D’Souza, L. J.;
Sinha, S. C.; Lu, S.-F.; Keinan, E.; Sinha, S. C. Tetrahedron 2001, 57,
5255. (j) Makabe, H.; Hattori, Y.; Tanaka, A.; Oritani, T. Org. Lett. 2002,
4, 1083. (k) Crimmins, M. T.; She, J. J. Am. Chem. Soc. 2004, 126, 12790.
(l) Zhang, Q.; Lu, H.; Richard, C.; Curran, D. P. J. Am. Chem. Soc. 2004,
126, 36. (m) Nattrass, G. L.; Diez, E.; McLachlan, M. M.; Dixon, D. J.;
Ley, S. V. Angew. Chem., Int. Ed. 2005, 44, 580.
(3) Previous syntheses of bullatacin: (a) Hoye, T. R.; Hanson, P. R.
Tetrahedron Lett. 1993, 34, 5043. (b) Hoye, T. R.; Tan, L. Tetrahedron
Lett. 1995, 36, 1981. (c) Naito, H.; Kawahara, E.; Maruta, K.; Maeda, M.;
Sasaki, S. J. Org. Chem. 1995, 60, 4419. (d) Sinha, S. C.; Sinha-Bagchi,
A.; Yazbak, A.; Keinan, E. Tetrahedron Lett. 1995, 36, 9257. (e) Avedissian,
H.; Sinha, S. C.; Yazbak, A.; Sinha, A.; Neogi, P.; Sinha, S. C.; Keinan, E.
J. Org. Chem. 2000, 65, 6035.
lylcupration9 of acetylene, addition of the intermediate
vinylcopper species to diisopropyl iodomethylboronate,10
hydrolysis of the crude alkylation product, and then esteri-
fication of the intermediate allylic boronic acid with diiso-
propyl (R,R)-tartrate provided (R,R)-7 in 57-60% yield. This
reagent underwent the expected11 syn-selective allylboration
reaction of achiral aldehydes in 74-95% yield. However,
the syn-â-hydroxyallylsilanes 8 were obtained with only 50-
64% ee. Because the synthesis of 7 proved difficult to scale-
up, alternative strategies for synthesis of the targeted
allylsilanes was pursued.
(4) For a review see: Masse, C. E.; Panek, J. S. Chem. ReV. 1995, 95,
1293.
(5) (a) Panek, J. S.; Yang, M. J. Am. Chem. Soc. 1991, 113, 9868. (b)
Panek, J. S.; Beresis, R. J. Org. Chem. 1993, 58, 809. (c) Beresis, R.; Panek,
J. S. Bioorg. Med. Chem. Lett. 1993, 3, 1609. (d) Micalizio, G. C.; Roush,
W. R. Org. Lett. 2001, 3, 1949. (e) Smitrovich, J. H.; Woerpel, K. A.
Synthesis 2002, 2778. (f) Heo, J.-N.; Micalizio, G. C.; Roush, W. R. Org.
Lett. 2003, 5, 1693.
(6) Micalizio, G. C.; Roush, W. R. Org. Lett. 2000, 2, 461.
(7) Tinsley, J. M.; Roush, W. R. J. Am. Chem. Soc. 2005, 127, 10818-
10819.
A more convenient route to (racemic) syn-â-hydroxyal-
lylsilanes 8 involves the γ-silylallylstannation of aldehydes
using γ-(dimethylphenylsilyl)allylstannane 9.12 Treatment of
cyclohexanecarboxaldehyde with 9 at -78 °C in CH2Cl2 in
the presence of BF3‚OEt2 provided 8d in 51% yield, along
(8) (a) Hui, Y.-H.; Rupprecht, J. K.; Liu, Y. M.; Anderson, J. E.; Smith,
D. L.; Chang, C.-J.; McLaughlin, J. L. J. Nat. Prod. 1989, 52, 463. (b)
Rieser, M. J.; Hui, Y.-H.; Rupprecht, J. K.; Kozlowski, J. F.; Wood, K. V.;
McLaughlin, J. L.; Hanson, P. R.; Zhuang, Z.; Hoye, T. R. J. Am. Chem.
Soc. 1992, 114, 10203. (c) Ahammadsahib, K. I.; Hollingworth, R. M.;
McGovren, J. P.; Hui, Y.-H.; McLaughlin, J. L. Life Sci. 1993, 53, 1113.
(d) Morre´, D. J.; de Cabo, R.; Farley, C.; Oberlies, N. H.; McLaughlin, J.
L. Life Sci. 1994, 56, 343. (e) Oberlies, N. H.; Croy, V. L.; Harrison, M.
L.; McLaughlin, J. L. Cancer Lett. 1997, 115, 73.
(9) Fleming, I.; Newton, T. W.; Roessler, F. J. Chem. Soc., Perkin Trans.
1 1981, 2527.
(10) (a) Matteson, D. S. Tetrahedron 1998, 54, 10555. (b) Soundararajan,
R.; Li, G.; Brown, H. C. J. Org. Chem. 1996, 61, 100.
(11) Roush, W. R. In ComprehensiVe Organic Synthesis; Trost, B. M.,
Ed.; Pergamon Press: Oxford, UK, 1991; Vol. 2, p 1.
(12) (a) Keck, G. E.; Romer, D. J. Org. Chem. 1993, 58, 6083. (b)
Yamamoto, Y.; Saito, Y.; Maruyama, K. J. Organomet. Chem. 1985, 292,
311.
4246
Org. Lett., Vol. 7, No. 19, 2005