Yao et al.
diols,13 2,4-dialkenyl-1,3-dicarbonyl compounds,14 or 2-alky-
nyl carbonyl compounds.15 No attention has been paid
to 2-(1-alkynyl)-2-alken-1-ones as possible furan precur-
sors, although they are more readily accessible and more
easily manipulated than are alkynyl or allenyl ketones.16
The utilization of 2-(1-alkynyl)-2-alken-1-ones for transi-
tion metal-catalyzed or electrophilic cyclization should
significantly expand the range of suitable starting ma-
terials for the synthesis of functionally substituted
furans.
rasubstituted furans in good to excellent yields (eq 2).
These unique cyclizations are particularly attractive,
because sequential nucleophilic domino attack onto an
alkyne affords multiply substituted furans through si-
multaneous formation of a C-O bond and a remote
carbon-nucleophile bond. One of the advantages of this
approach to furans is that the regioselective introduction
of substituents about the furan ring comes down to the
appropriate choice of the 2-(1-alkynyl)-2-alken-1-one and
nucleophile, which allows for considerable versatility
(Scheme 1). Furthermore, the electrophile-induced cy-
clization provides a general and efficient approach to the
regioselective synthesis of tetrasubstituted furans, which
is still today a challenge in organic synthesis.
Recently, we have communicated a AuCl3-catalyzed
synthesis of substituted furans from 2-(1-alkynyl)-2-
alken-1-ones, which produces highly substituted furans
in good to excellent yields (eq 1).17 Now, we wish to report
a detailed study of the AuCl3-catalyzed synthesis of
substituted furans, together with a novel electrophile-
induced three-component reaction, which produces tet-
Results and Discussion
Our preliminary studies have been carried out on the
transition metal-catalyzed coupling of 2-phenylethynyl-
2-cyclohexen-1-one (1) and methanol to afford furan 2
(Table 1). As we previously communicated, silver, copper,
gold, and mercury salts afford good yields of furan 2
(Table 1, entries 1-4).17 Among these salts, AuCl3 is the
most efficient catalyst based on reaction time and yield.
This is consistent with previous work on the cyclization
(8) (a) Benassi, R. In Comprehensive Heterocyclic Chemistry II;
Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon:
Oxford, UK, 1996; Vol. 2, pp 259-295. (b) Heaney, H.; Ahn, J. S. In
Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees, C.
W., Scriven, E. F. V., Eds.; Pergamon: Oxford, UK, 1996; Vol. 2, pp
297-357. (c) Friedrichsen, W. In Comprehensive Heterocyclic Chemistry
II; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon:
Oxford, UK, 1996; Vol. 2, pp 351-393. (d) Keay, B. A.; Dibble, P. W.
In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees,
C. W., Scriven, E. F. V., Eds.; Pergamon: Oxford, UK, 1996; Vol. 2, pp
395-436. (e) Comprehensive Organic Synthesis; Trost, B. M., Fleming,
I., Eds.; Pergamon: Oxford, UK, 1991.
SCHEME 1
(9) Recent reviews: (a) Hou, X. L.; Yang, Z.; Wong, H. N. C. In
Progress in Heterocyclic Chemistry; Gribble, G. W., Gilchrist, T. L.,
Eds.; Pergamon Press: Oxford, UK, 2002; Vol. 14, pp 139-179. (b)
Cacchi, S. J. Organomet. Chem. 1999, 576, 42-64. (c) Hou, X. L.;
Cheung, H. Y.; Hon, T. Y.; Kwan, P. L.; Lo, T. H.; Tong, S. Y.; Wong,
H. N. C. Tetrahedron 1998, 54, 1955-2020.
(10) (a) Sheng, H.; Lin, S.; Huang, Y. Tetrahedron Lett. 1986, 27,
4893-4894. (b) Fukuda, Y.; Shiragami, H.; Utimoto, K.; Nozaki, H. J.
Org. Chem. 1991, 56, 5816-5819. (c) Kel’in, A. V.; Gevorgyan, V. J.
Org. Chem. 2002, 67, 95-98. (d) Ma, S.; Zhang, J. Chem. Commun.
2000, 117-118. (e) Marshall, J. A.; Wang, X.-J. J. Org. Chem. 1992,
57, 3387-3396. (f) Marshall, J. A.; Wang, X.-J. J. Org. Chem. 1991,
56, 960-969. (g) Marshall, J. A.; Bartley, G. S. J. Org. Chem. 1994,
59, 7169-7171. (h) Arcadi, A.; Cacchi, S.; Larock, R. C.; Marinelli, F.
Tetrahedron Lett. 1993, 34, 2813-2816. (i) Hashmi, A. S. K.; Schwarz,
L.; Choi, J.-H.; Frost, T. M. Angew. Chem., Int. Ed. 2000, 39, 2285-
2288.
TABLE 1. Catalytic Cyclization and Coupling of
2-Phenylethynyl-2-cyclohexen-1-one (1) and Methanola
(11) (a) Wakabayashi, Y.; Fukuda, Y.; Shiragami, H.; Utimoto, K.;
Nozaki, H. Tetrahedron 1985, 41, 3655-3661. (b) Gabriele, B.; Salerno,
G.; Lauria, E. J. Org. Chem. 1999, 64, 7687-7692. (c) Seiller, B.;
Bruneau, C.; Dixneuf, P. H. J. Chem. Soc., Chem. Commun. 1994, 493-
494. (d) Seiller, B.; Bruneau, C.; Dixneuf, P. H. Tetrahedron 1995, 51,
13089-13102. (e) Ku¨cu¨kbay, H.; Cetinkaya, B.; Guesmi, S.; Dixneuf,
P. H. Organometallics 1996, 15, 2434-2439.
time
(h)
% yield
% recovery
entry
catalyst
AgO2CCF3
Cu(O3SCF3)2
AuCl3
Hg(O2CCF3)2
Pd(OAc)2
PtCl2
of 2b
of 1
1
2
10
9
0.5
8
6
24
24
24
24
24
1
87
81
90c
86
30d
10
27
0
0
0
0
0
65
81
68
95
71
90
0
3
(12) (a) Lo, C.-Y.; Guo, H.; Lian, J.-J.; Shen, F.-M.; Liu, R.-S. J. Org.
Chem. 2002, 67, 3930-3932. (b) Marshall, J. A.; DuBay, W. J. J. Am.
Chem. Soc. 1992, 114, 1450-1456. (c) Hashmi, A. S. K.; Sinha, P. Adv.
Synth. Catal. 2004, 346, 432-438.
4
5
6
7
Cu(NO3)2‚2.5H2O
RuCl3‚3H2O
PtCl2(PPh3)2
RhCl3
(13) Bew, S. P.; Knight, D. W. Chem. Commun. 1996, 1007-1008.
(14) Stefani, H. A.; Petragnani, N.; Valduga, C. J.; Brandt, C. A.
Tetrahedron Lett. 1997, 38, 4977-4980.
8
9
18
8
0
10
11
(15) (a) Rao, M. S.; Esho, N.; Sergeant, C.; Dembinski, R. J. Org.
Chem. 2003, 68, 6788-6790. (b) Sniady, A.; Wheeler, K. A.; Dembinski,
R. Org. Lett. 2005, 7, 1769-1772.
HBF4
a Reaction conditions: 1 (0.1 mmol), catalyst (0.001 mmol), and
MeOH (0.15 mmol) in CH2Cl2 (0.5 mL) at room temperature.
b Determined by 1H NMR spectroscopic analysis. c Compound 2
can be obtained cleanly within 40 min in an 88% yield when using
0.1 mol % AuCl3. Only a 30% yield of 2 was obtained after 24 h
when 0.01 mol % of AuCl3 was employed. d Pd black appeared.
(16) Miller, M. W.; Johnson, C. R. J. Org. Chem. 1997, 62, 1582-
1583.
(17) (a) Yao, T.; Zhang, X.; Larock, R. C. J. Am. Chem. Soc. 2004,
126, 11164-11165. (b) For a review of gold catalysis, see: Hashmi, A.
S. K. Gold Bull. 2004, 37, 51-65. (c) For the same reaction catalyzed
by copper(I), see: Patll, N. T.; Wu, H.; Yamamoto, Y. J. Org. Chem.
2005, 70, 4531-4534.
7680 J. Org. Chem., Vol. 70, No. 19, 2005