Communications
Matsuda, I. Takaki, K. Hiraki, S. Oishi, Bull. Chem. Soc. Jpn.
1989, 62, 2963 – 2967.
with a small amount of 4 on the basis of NMR spectroscopy
and ESI mass spectra. This result indicates that the mecha-
nism of formation in the initial I2 oxidation involves the
release of CO2 in 1 and coordination of IÀ to the resulting
vacant site generating the intermediate 4’. Further reaction of
the bridging OH group of 4’ with another mole of I2 would
proceed to produce 4. However, isolation of 4’ failed owing to
its facile conversion into 4 during the separation procedures.
In conclusion, we have isolated the novel dinuclear
species 1 that is bridged by hydrido, hydroxo, and k2-O,C-
CO2, and which has multiple reactive sites. With tBuNC and
CO 1 undergoes simple ligand replacement of one PMe3
molecule to give 2a and 2b, respectively. The reactions with
protic acids (benzoic and p-toluic acid)afford arylcarboxylato
bridging complexes (3a and 3b)in reactions that proceed
through the selective protonation on the hydroxo ligand. A
[3] a)H. Kawano, Y. Nishimura, M. Onishi, Dalton Trans. 2003,
1808 – 1812; b)H. Kawano, H. Narimatsu, D. Yamamoto, K.
Tanaka, K. Hiraki, M. Onishi, Organometallics 2002, 21, 5526 –
5530; c)K. Hiraki, Y. Kinoshita, J. Kinoshita-Kawashima, H.
Kawano, J. Chem. Soc. Dalton Trans. 1996, 291 – 298; d)K.
Hiraki, T. Matsunaga, H. Kawano, Organometallics 1994, 13,
1878 – 1885.
[4] Reactions of [RuCl2(CO)2(PMe3)2] with NaBH4 in alcohol have
resulted in mononuclear hydrido complexes, [RuCl(H)(CO)2-
(PMe3)2] and [Ru(H)2(CO)2(PMe3)2]: a)M. P. Waugh, R. J.
Mawby, J. Chem. Soc. Dalton Trans. 1997, 21 – 33; b)D. Schott,
C. J. Sleigh, J. P. Lowe, S. B. Duckett, R. J. Mawby, M. G.
Partridge, Inorg. Chem. 2002, 41, 2960 – 2970.
[5] a)M. Faure, L. Maurette, B. Donnadieu, G. Lavigne, Angew.
Chem. 1999, 111, 539 – 542; Angew. Chem. Int. Ed. 1999, 38, 518 –
522; b)L. Maurette, B. Donnadieu, G. Lavigne, Angew. Chem.
1999, 111, 3919 – 3922; Angew. Chem. Int. Ed. 1999, 38, 3707 –
3710.
similar result was also observed in the reaction with HBArF .
4
On the other hand, for the reaction of 1 with I2, oxidative
addition occurred to afford the decarboxylated complex 4 via
the intermediate 4’. Further investigations on other chemical
reactivities of 1 are underway.
[6] a)Crystal data for 1: C15H37O5P4Ru2 (Mr = 623.49); monoclinic,
P21/n (No. 14), a = 11.663(5), b = 12.589(3), c = 18.762(2), b =
103.024(2)8, V= 2683(1) 3, Z = 4, 1calcd = 1.543 gcmÀ3
,
R
(Rw) = 0.133 (0.137), GOF = 1.19 for 235 variables and 5947
unique reflections (all data).[6b] For crystallographic details, see
Supporting Information; b)CCDC-268894 to 268897 contain the
supplementary crystallographic data for this paper. These data
can be obtained free of charge from the Cambridge Crystallo-
[7] a)J. S. Field, R. J. Haines, J. Sundermeyer, S. F. Woollam, J.
Chem. Soc. Dalton Trans. 1993, 2735 – 2748; b)D. H. Gibson,
Chem. Rev. 1996, 96, 2063 – 2095; c)D. H. Gibson, B. A. Sleadd,
M. S. Mashuta, J. F. Richardson, Organometallics 1997, 16,
4421 – 4427; d)D. H. Gibson, Y. Ding, J. G. Andino, M. S.
Mashuta, J. F. Richardson, Organometallics 1998, 17, 5178 –
5183; e)D. H. Gibson, X. Yin, J. Am. Chem. Soc. 1998, 120,
11200 – 11201.
[8] R. J. Haines in Comprehensive Organometallic Chemistry II,
Vol. 7 (Eds.: E. W. Abel, F. G. A. Stone, G. Wilkinson), Perga-
mon, Oxford, 1995, pp. 625 – 681.
[9] a)R. A. Jones, G. Wilkinson, A. M. R. Galas, M. B. Hursthouse,
K. M. A. Malik, J. Chem. Soc. Dalton Trans. 1980, 1771 – 1778;
b)E. G. Fidalgo, L. Plasseraud, H. Stoeckil-Evans, G. Süss-Fink,
Inorg. Chem. Commun. 2001, 4, 308 – 310; c)K.-B. Shiu, J.-Y.
Chen, G.-H. Lee, F.-L. Liao, B.-T. Ko, Y. Wang, S.-L. Wang, C.-C.
Lin, J. Organomet. Chem. 2002, 658, 117 – 125.
Experimental Section
Details on the syntheses as well as full spectroscopic characterization
of 1–4 are given in the Supporting Information.
1: An aqueous 10m KOH solution (76 mL, 760 mmol)was added
to an ethanol solution (230 mL)of cis,cis,trans-[RuCl2(CO)2(PMe3)2]
(2.9 g, 7.6 mmol). The mixture was heated under reflux for 24 h and
the resulting red brown solution was concentrated to one-third of its
original volume to produce red brown oil. The supernatant colorless
solution was then removed and the oily product was dried in vacuo.
The residue was extracted with benzene and addition of hexane
precipitated a yellow brown powder of 1 (1.4 g, 59%). 1H NMR
(C6D6, 400 MHz): d = 1.51 (d, J = 9.4 Hz, PMe3), 1.30 (d, J = 9.9 Hz,
PMe3), 1.26 (d, J = 9.8 Hz, PMe3), 1.15 (d, J = 6.0 Hz, PMe3), À0.61 (s,
m-OH), À11.2 ppm (m, m-H); 31P{1H} NMR (C6D6; 162 MHz): d =
16.1 (d, J = 26 Hz, PMe3), 3.81 (dd, J = 11, 41 Hz, PMe3), 0.21 (dd, J =
26, 41 Hz, PMe3), À18.4 ppm (d, J = 11 Hz, PMe3); 13C{1H} NMR
(C6D6; 100 MHz): d = 207 (dd, J = 7.9, 16 Hz, CO), 205 (br, d, J =
102 Hz, CO2), 204 (t, J = 14 Hz, CO), 20.3 (d, J = 31 Hz, PMe3), 19.4
(d, J = 27 Hz, PMe3), 18.9 (d, J = 16 Hz, PMe3), 15.8 ppm (d, J =
ꢀ
27 Hz, PMe3). IR (KBr, pellet): n˜ = n(OH)3390 (br); n(C O)1920
(s), 1906 (s); 951 (m) cmÀ1. FAB-MS (m/z): 626 ([M+1]+), 581
([MÀCO2À1]+), 505 ([MÀCO2ÀPMe3À1]+). Elemental analysis (%)
calcd for C15H38O5P4Ru2: C 28.97, H 6.60; found: C 28.85, H 6.13.
[10] A probable mechanistic scheme is given in the Supporting
Information.
¯
[11] Crystal data for 2a: C17H37NO5P3Ru2 (Mr = 630.54); cubic, Pa3
(No. 205), a = 26.0919(3), V= 17763.0(4) 3, Z = 24, 1calcd
=
1.415 gcmÀ3
, R (Rw) = 0.073 (0.096), GOF = 1.90 for 253
Received: April 18, 2005
Published online: July 26, 2005
variables and 6787 unique reflections (all data).[6b] For ORTEP
diagram and crystallographic details, see Supporting Informa-
tion.
Keywords: carbon dioxide · carbonyl complexes·
.
[12] a)F. J. García Alonso, M. García Sanz, V. Riera, A. Anillo Abril,
A. Tiripicchio, F. Ugozzoli, Organometallics 1992, 11, 801 – 808;
b)N. Cabon, F. Y. Pꢀtillon, P. Schollhammer, J. Talarmin, K. W.
Muir, Dalton Trans. 2004, 2708 – 2719; c)C. M. Alvarez, M. A.
Alvarez, M. E. García, A. Ramos, M. A. Ruiz, M. Lanfranchi, A.
Tiripicchio, Organometallics 2005, 24, 7 – 9.
hydrido species · hydroxides · ruthenium
[1] a)T. Naota, H. Takaya, S.-I. Murahashi, Chem. Rev. 1998, 98,
2599 – 2660; b)R. Noyori, T. Ohkuma, Angew. Chem. 2001, 113,
40 – 75; Angew. Chem. Int. Ed. 2001, 40, 40 – 73; c)B. M. Trost,
F. D. Toste, A. B. Pinkerton, Chem. Rev. 2001, 101, 2067 – 2096;
d)F. Kakiuchi, S. Murai, Acc. Chem. Res. 2002, 35, 826 – 834.
[2] a)H. Kawano, Y. Masaki, T. Matsunaga, K. Hiraki, M. Onishi, T.
Tsubomura, J. Organomet. Chem. 2000, 601, 69 – 77; b)M.
Onishi, M. Yonekura, K. Hiraki, M. Shugyo, H. Kawano, H.
Kobayashi, J. Mol. Catal. A 1997, 121, 9 – 15; c)M. Onishi, M.
[13] Crystal data for 3b·H2O: C23H35O7P4Ru2 (Mr = 749.56); mono-
clinic, P21/c (No. 14), a = 17.586(2), b = 11.408(2), c =
17.5779(3), b = 103.0707(4)8, V= 3435.0(8) 3, Z = 4, 1calcd
=
1.449 gcmÀ3
, R (Rw) = 0.075 (0.101), GOF = 0.91 for 337
variables and 7523 unique reflections (all data).[6b] For ORTEP
diagram and crystallographic details, see Supporting Informa-
tion.
5512
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2005, 44, 5509 –5513