Chemistry - A European Journal
10.1002/chem.201602201
COMMUNICATION
4764–4806; d) N. J. Agard, J. A. Prescher, C. R. Bertozzi, J. Am. Chem.
Soc. 2004, 126, 15046–15047.
however, incorporation of methyl substituent at the -styryl
position completely extinguished any reaction between the trap
and the cyclic allene, indicating a high sensitivity to steric
demand.
[4]
[5]
a) G. Wittig, P. Fritze, Angew. Chem. Int. Ed. 1966, 5, 846; b) G. Wittig,
P. Fritze, Liebigs Ann Chem. 1968, 711, 82–87.
a) R. P. Johnson, Chem. Rev. 1989, 89, 1111–1124; b) M. Balci, Y.
Taskesenligil, In Advances in Strained and Interesting Organic
Molecules, Vol. 8 (Ed.; B. Halton), JAI Press: Stamford, Connecticut,
1999, pp. 43–82; c) M. Christl, in Modern Allene Chemistry, (Eds.: N.
Krause, A. S. K. Hashmi) Wiley-VCH, Weinheim, 2005, pp 243–357.
a) W. V. E. Doering, A. K. Hoffman, J. Am. Chem. Soc. 1954, 76,
6162–6165; b) W. R. Moore, H. R. Ward, J. Org. Chem. 1960, 25,
2073; c) L. Skattebol, Tetrahedron Lett. 1961, 167–172; d) L. Skattebol,
S. Solomon, Organic Syntheses. 1969, 49, 35–38.
[6]
Scheme 5. Attempted interception of the allene/azide [2+1+2] cycloaddition
with styrene.
[7]
[8]
[9]
W. C. Shakespeare, R. P. Johnson, J. Am. Chem. Soc. 1990, 112,
8578–8579.
I. Quintana, D. Peña, D. Pérez, E. Guitián, E. J. Org. Chem. 2009,
5519–5524.
Previously studied reactions of substituted styrenes with
cyclic allenes strongly suggest the reactions involve diradical
intermediates.[28,30,31] In analogy, the present reaction likely
occurs via the radical addition of the central cyclic allene carbon
atom into the styrene to generate a new biradical intermediate C
(Scheme 4). Upon ring closure, spontaneous extrusion of
dinitrogen would occur furnishing tetrahydroindole E which could
rearrange to the aromatic product 15 via a series of proton
transfers.
We have described a succinct, convenient and scalable
route to highly reactive 1,2-cyclohexadienes, exemplified here
by the parent compound and the 1-acetoxy derivative. In
addition to well-established [4+2] reaction with furan, we have
shown that nitrile oxide, nitrone and azomethine imine 1,3-
dipoles can serve as efficient traps to furnish polycyclic
heterocyclic products with high regio- and stereoselectivity. In
contrast, azide traps afford unique reactivity, involving formation
of unusual 2:1 adducts in the case of aryl azides, and
tetrahydroindoles in the case of styryl azides. Further efforts to
intercept these fascinating intermediates in synthetically useful
transformations and attempts to elucidate reactions mechanisms
and the origins of the high selectivities are ongoing and will be
described elsewhere.
During preparation of this manuscript a similar study concerning nitrone
trapping of the parent 1,2-cyclohexadine was reported: J. S. Barber, E.
D. Styduhar, H. V. Pham, T. C. McMahon, K. N. Houk, N. K. Garg, J.
Am. Chem. Soc. 2016, 138, 2512–2515.
[10] Accessible via a three step procedure from cyclohexanone; a) M. Utaka,
S. Matsushita, A. Takeda, Chem. Lett. 1980, 779–780; b) M. G.
Saulnier, J. F. Kadow, M. M. Tun, D. R. Langley, D. M. Vyas, J. Am.
Chem. Soc. 1989, 111, 8320–8321.
[11] J. L. Luche, A. L. Gemal, J. Am. Chem. Soc. 1979, 101, 5848–5849.
[12] Y. Yoshida, Y. Sakakura, N. Aso, S. Okada, Y. Tanabe, Tetrahedron
1999, 55, 2183–2192.
[13] a) I. Fleming, in e-EROS Encyclopedia Of Reagents for Organic
Synthesis. 2009, 1–3; b) J. T. B. H. Jastrzebski, G. van Koten, In
Modern Organocopper Chemistry, (Ed.; N. Krause), Wiley-VCH,
Wienheim, 2002; pp 1–44.
[14] P. L. Stotter, K. A. Hill, J. Org. Chem. 1973, 38, 2576–2578.
[15] A. T. Bottini, L. L. Hilton, J. Plott, Tetrahedron. 1975, 1997–2001.
[16] P. Beltrame, P. L. Beltrame, A. Filippi, G. Zecchi, J. Chem. Soc. Perkin
Trans. 2, 1972, 1914–1919.
[17] B. Engels, J. C. Schöneboom, A. F. Münster, S. Groetsch, M. Christl, J.
Am. Chem. Soc. 2002, 124, 287–297
[18] N. H. Werstiuk, C. D. Roy, J. Ma, Can. J. Chem. 1996, 74, 1903–1905.
[19] a) K. N. Houk, J. Sims, C. R. Watts, L. J. Luskus, J. Am. Chem. Soc.
1973, 95, 7301–7315; b) K. N. Houk, J. Sims, R. E. Duke, R. W.
Strozier, J. K. George, J. Am. Chem. Soc. 1973, 95, 7287–7301.
[20] a) N. A. LeBel, E. Banucci, E. J. Am. Chem. Soc. 1970, 92, 5278–5280;
b) G. B. Blackwell, R. N. Haszeldine, D. R. Taylor, J. Chem. Soc.
Perkin Trans. 1, 1983, 1–5.
[21] See supporting information for full characterization.
[22] Only catalyzed reactions have been reported for azomethine imine/
allene cycloadditions. C. Nájera, J. M. Sansano, M. Yus, Org. Biomol.
Chem. 2015, 13, 8596–8636.
Acknowledgements
V.A.L. acknowledges the financial support of the Natural
Science and Engineering Research Council of Canada (NSERC)
for a Post Graduate Fellowship as well as the University of
Alberta for a Queen Elizabeth II Graduate Scholarship. The
authors also thank Dr. Robert McDonald (University of Alberta
X-ray Crystallography Facility) for the X-Ray crystal structure of
10a and thank NSERC for partial research support.
Acknowledgment is also made to the Donors of the American
Chemical Society Petroleum Research Fund for partial support
of this research.
[23] CCDC 1457161 (10a) contains the supplementary crystallographic data
for this paper. These data may be obtained free of charge from the
Cambridge
Crystallographic
Data
Centre
via
[24] M. Christl, H. Fischer, M. Arnone, B. Engels, Chem. Eur. J. 2009, 15,
11266–11272.
[25] For earlier examples of 1,3-dipolar cycloadditions of azides with acyclic
and cyclic allenes, see: a) W. Ried, H. Mengler, Liebig Ann. Chem.
1964, 678, 95–113; b) D. K. Wedegaertner, R. K. Kattak, I. Harrison, S.
K. Cristie, J. Org. Chem. 1991, 56, 4463–4467.
[26] a) K. S. Feldman, M. R. Iyer, J. Am. Chem. Soc. 2005, 127, 4590–
4591; b) C. S. López, O. N. Faza, K. S. Feldman, M. R. Iyer, D. K.
Hester, J. Am. Chem. Soc. 2007,129, 7638–7646.
Keywords: Cyclic Allene • Dipolar Cycloaddition • Heterocycles
• Reactive Intermediate
[27] R. O. Angus, Jr, M. W. Schmidt, R. P. Johnson, J. Am. Chem. Soc.
1985, 107, 532–537. ꢀ
[28] W. R. Moore, W. R. Moser, J. Org. Chem. 1970, 35, 908–912.
[1]
Reactive Intermediate Chemistry, (Eds.: R. A. Moss, M. S. Platz, M.
Jones Jr.); John Wiley & Sons, 2004.
[29] a) Z. Wang, In Comprehensive Organic Name Reactions and Reagents,
John Wiley & Sons, 2010, 475, 2107–2110; b) P. K. Chiu, M. P.
Sammes, Tetrahedron, 1988, 3531–3538.
[2]
[3]
Strained Hydrocarbons, (Eds.: H. Dodziuk); John Wiley & Sons, 2009.
a) C. M. Gampe, E. M. Carreira, Angew. Chem. Int. Ed. 2012, 51,
3766–3778; b) C. M. Gampe, E. M. Carreira, Angew. Chem. Int. Ed.
2011, 50, 2962–2965; c) K. Lang, J. W. Chin, Chem. Rev. 2014, 114,
[30] S. Harnos, S. Tivakornpannarai, E. E. Waali, Tetrahedron Lett. 1986,
27, ꢀ3701–3704. ꢀ
[31] M. Christl, M. Schreck, Chem. Ber. 1987, 120, 915–920. ꢀ