4366
J. Pontillo et al. / Bioorg. Med. Chem. Lett. 15 (2005) 4363–4366
electronic preference for this phenyl ring. Any 2-meth-
oxyphenyl compound with an additional substituent
on the phenyl ring (6m–6g) showed no competitive bind-
ing, except the 2,4-dimethoxy analogue 6l (Ki = 5.2 lM).
The ethoxy 6r, as well as the 8-quinolinyl 6t and the
3-benzothienyl compound 6v, also displayed no binding
activity, while the 1-naphthyl derivative exhibited poor
affinity (6u, Ki = 4.3 lM). As predicted, the 2-fluoro-3-
methoxyphenyl compound 6s (Ki = 92 nM) displayed
an almost 20-fold increase in binding affinity over the
phenyl derivative 6a. Although these results are parallel
to those of the 6-methyluracils 1a (Ki = 15 nM) and 1d
(Ki = 0.56 nM), the 6-azauracil 6s was about 17-fold less
potent than its uracil analogue 3a. Thus, replacement
of the CH moiety of 3a with the smaller N atom at
the 6-position reduced binding affinity.
interactions with the receptor. 6x (Ki = 2.3 nM) was
identified as a potent GnRH antagonist from this series.
The improved potency of this compound was possibly
due to an increase in binding interactions of the 6-(2-
chloro-3-methoxyphenyl) group with amino acid resi-
dues such as Asp-122 on the human GnRH receptor.
References and notes
1. Zhu, Y.-F.; Chen, C.; Struthers, R. S. Annu. Rep. Med.
Chem. 2004, 39, 99.
2. Tucci, F. C.; Zhu, Y.-F.; Struthers, R. S.; Guo, Z.; Gross,
T. D.; Rowbottom, M. W.; Acevedo, O.; Gao, Y.;
Saunders, J.; Xie, Q.; Reinhart, G. J.; Liu, X.-J.; Ling,
N.; Bonneville, A. K. L.; Chen, T.; Bozigian, H.; Chen, C.
J. Med. Chem. 2005, 48, 1169.
3. Guo, Z.; Wu, D.; Zhu, Y.-F.; Tucci, F. C.; Pontillo, J.;
Saunders, J.; Xie, Q.; Struthers, R. S.; Chen, C. Bioorg.
Med. Chem. Lett. 2005, 15, 693.
Previously, we have shown in the non-methyl uracils
that a 2-fluoro-6-trifluoromethylbenzyl group at the
1-position (3c, Ki = 0.64 nM) possesses about 9-fold in-
creased affinity over the corresponding 2,6-difluoroben-
zyl analogue (3a, Ki = 5.3 nM).4 In the azauracil series,
the 2-fluoro-6-trifluoromethylbenzyl analogue 6w
(Ki = 13 nM) was about 7-fold better than the 2,6-diflu-
orobenzyl analogue 6s. Interestingly, the 2-chloro-3-
methoxyphenyl compound 6x (Ki = 2.3 nM) showed
another 6-fold binding affinity increase over the corre-
sponding 2-fluoro analogue 6w. These results may sug-
gest that the 3-methoxy group of the 6-phenyl ring in
6 plays a much more important role in receptor interac-
tion than that in 3a or 3c. On the basis of our receptor
modeling, the counterpart for this interaction could be
Asn-212 on transmembrane domain 5 of the human
GnRH receptor. This residue is known to be important
for hydrogen-bonding interaction with the pyro-gluta-
mine at the 1-position of the GnRH peptide.16,17
4. Guo, Z.; Chen, Y.; Huang, C. Q.; Gross, T. D.; Pontillo,
J.; Rowbottom, M. W.; Saunders, J.; Struthers, R. S.;
Tucci, F. C.; Xie, Q.; Wade, W.; Zhu, Y.-F.; Wu, D.;
Chen, C. Bioorg. Med. Chem. Lett. 2005, 15, 2519.
5. Lyga, J. W. PCT patent application WO8600072, 1986.
6. Audia, J. E.; Evrard, D. A.; Murdoch, G. R.; Froste, J. J.;
Nissen, J. S.; Schenck, K. W.; Fludzinski, P.; Lucaites, V.
L.; Nelson, D. L.; Cohen, M. L. J. Med. Chem. 1996, 39,
2773.
7. For a review, see: Hughes, D. L. Org. Prep. Proced. Int.
1996, 28, 127.
8. Mansourm, A. K.; Eid, M. M.; Hassa, R. A.; Haemers,
A.; Pattyn, S. R.; Vanden Berghe, D. A.; Van Hoof, L.
J. Heterocycl. Chem. 1988, 25, 279.
9. Beebe, X.; Nilius, A. M.; Merta, P. J.; Soni, N. B.; Bui, M.
H.; Wagner, R.; Beutel, B. A. Bioorg. Med. Chem. Lett.
2003, 13, 3133.
10. Sharma, B. P.; Lakha, R. J. Napal Chem. Soc. 1999, 17–
18, 8.
11. Jin, Y. H.; Liu, P.; Wang, J.; Baker, R.; Huggins, J.; Chu,
C. K. J. Org. Chem. 2003, 68, 9012.
12. Dudfield, P. J.; Le, V.-D.; Lindell, S. D.; Rees, C. W. J.
Chem. Soc., Perkin Trans. 1 1999, 2929.
13. For reviews, see: (a) Bellina, F.; Carpita, A.; Rossi, R.
Synthesis 2004, 15, 2419; (b) Kotha, S.; Lahiri, K.;
Kashinath, D. Tetrahedron 2002, 58, 9633; (c) Negishi,
E. In Handbook of Organopalladium Chemistry for Organic
Synthesis; Wiley-Interscience: New York, 2002, pp 767–
789; (d) Stanforth, S. P. Tetrahedron 1998, 54, 263.
14. Tzeng, C. C.; Motola, N. C.; Panzica, R. P. J. Org. Chem.
1983, 48, 1271.
15. For experimental details, see: Pontillo, J.; Guo, Z.; Wu, D.
PTC patent application WO03011841, 2003.
16. Hoffmann, S. H.; ter Laak, T.; Kuhne, R.; Reilander, H.;
Beckers, T. Mol. Endocrinol. 2000, 14, 1099.
17. Millar, R. P.; Lu, Z.-L.; Pawson, A. J.; Flanagan, C. A.;
Morgan, K.; Maudsley, S. R. Endocr. Rev. 2004, 25,
235.
Finally, 1,2,4-triazine-3,5-diones with 6-phenoxy (7a),
phenylsulfinyl (7b), and 1-morpholinyl group (7c) were
tested but these compounds showed no affinity in the
competitive binding, suggesting that the 6-aryl group
of 6 is important for receptor interaction.
In conclusion, several synthetic routes for 2-, 4-, and 6-
aryl-1,2,4-triazine-3,5-diones (1-, 3-, and 5-aryl-6-aza-
uracils) were developed for structure–activity relation-
ship study of the monocyclic GnRH antagonists. The
successful Mitsunobu reactions enabled us to install a
favored (2R)-aminophenethyl side chain at both the 2-
and 4-positions of the triazinediones. The results from
these SAR studies provide further evidence for the role
of the 6-methyl group in the uracil 1, which is important
for invoking a conformation that positions two key ele-
ments, the 5-phenyl and 1-benzyl groups, for favored