Although it is clear that the overall intensity of both absorption
and emission are lower in polar solvent (DMSO), the fluorescence
intensity in DMSO is relatively lower than that in CHCl3. This
can be attributed to the release of the macrocycle from the
Gly-Gly station through the disruption of hydrogen bonding
by DMSO. The Fo¨rster distances of the dyes are typically around
1a
20–80 A; a distance that mostly exceeds the length of the axle.
˚
Accordingly, the system maintains FRET as long as the rotaxane
is intact.
The motion of the macrocycle was also observed using NMR
analysis. The conformation of the rotaxane 1 was elucidated by 1H
and ROESY NMR spectra as shown in Fig. 3. In a non-polar
environment,14 the macrocycle was predominantly located around
one of the glycine residues and the proton Ha. In the polar
environment, the macrocycle shifts towards the center of the axle
as is apparent from the upfield shifts (up to 0.8 ppm) of protons
that also show NOE interactions with the macrocycle.
In summary, the present research demonstrated that FRET
labeling can be used to detect small motions in mechanically
interlocked systems.
Fig. 2 Absorption (—) and fluorescence (......) spectra of the [2]rotaxane
1 in CHCl3 (red) and DMSO (blue), (50 mM, lexc 5 345 nm, 298 K).
expected by the mechanical bonding of the donor and acceptor
(see ESI{). Absorption and fluorescence properties of 1 were
also investigated under polar and non-polar environments.
We are grateful to the Skaggs Institute for Research and to The
National Institutes of Health (GM 50174) for financial support.
H. O. is a Skaggs Postdoctoral Fellow.
Notes and references
1 For reviews on FRET theory and applications, see: (a) P. Wu and
L. Brand, Anal. Biochem., 1994, 218, 1; (b) J. Szo¨llo˝si, S. Damjanovich
and L. Ma´tyus, Cytometry, 1998, 34, 159.
2 R. K. Castellano, S. L. Craig, C. Nuckolls and J. Rebek, Jr., J. Am.
Chem. Soc., 2000, 122, 7876.
3 M. Tamura and A. Ueno, Chem. Lett., 1998, 369.
4 For related examples where a macrocycle itself quenches fluorescence of
a donor, see: (a) G. Giro, M. Cocchi, V. Fattori, G. Gadret, G. Ruani,
M. Cavallini, F. Biscarini, R. Zamboni, T. Loontjens, J. Thies,
D. A. Leigh, A. F. Morales and R. F. Mahrt, Synth. Met., 2001, 122,
63; (b) E. M. Perez, D. T. F. Dryden, D. A. Leigh, G. Teobaldi and
F. Zerbetto, J. Am. Chem. Soc., 2004, 126, 12210.
5 For related systems but fluorophores are covalently attached, see: (a)
D. H. Qu, G. C. Wang, J. Ren and H. Tian, Org. Lett., 2004, 6, 2085;
(b) K. Hiratani, M. Kaneyama, Y. Nagawa, E. Koyama and
M. Kanesato, J. Am. Chem. Soc., 2004, 126, 13568.
6 For examples of non-interlocked systems, see: (a) E. Ishow, A. Credi,
V. Balzani, F. Spadola and L. Mandolini, Chem. – Eur. J., 1999, 5, 984;
(b) L. Jullien, J. Canceill, B. Valeur, E. Bardez, J.-P. Lefe`vre, J.-M. Lehn,
V. Marchi-Artzner and R. Pensu, J. Am. Chem. Soc., 1996, 118, 5432.
7 For examples of electron/energy transfer, see: (a) M. Andersson,
M. Linke, J.-C. Chambron, J. Davidsson, V. Heitz, L. Hammarstro¨m
and J.-P. Sauvage, J. Am. Chem. Soc., 2002, 124, 4347; (b) K. Li,
´
P. J. Bracher, D. M. Guldi, M. A. Herranz, L. Echegoyen and
D. I. Schuster, J. Am. Chem. Soc., 2004, 126, 9156.
8 For reviews on molecular machines, see: (a) P. F. Barbara, Acc. Chem.
Res., 2001, 34, 409, special issue on Molecular Machines, ed.
J. F. Stoddart; (b) V. Balzani, M. Venturi and A. Credi, Molecular
Devices and Machines: A Journey into the Nanoworld, Wiley-VCH,
Weinheim, 2003; (c) C. J. Easton, S. F. Lincoln, L. Barr and H. Onagi,
Chem.-Eur. J., 2004, 10, 3120. Specific to rotaxanes and catenanes, see:
(d) V. Balzani, M. Go´mez-Lo´pez and J. F. Stoddart, Acc. Chem. Res.,
1998, 31, 405; (e) J.-P. Sauvage, Acc. Chem. Res., 1998, 31, 611.
9 (a) P. L. Anelli, N. Spencer and J. F. Stoddart, J. Am. Chem. Soc., 1991,
113, 5131; (b) H. Murakami, A. Kawabuchi, K. Kotoo, M. Kunitake
and N. Nakashima, J. Am. Chem. Soc., 1997, 119, 7605; (c) A. S. Lane,
D. A. Leigh and A. Murphy, J. Am. Chem. Soc., 1997, 119, 11092; (d)
N. Armaroli, V. Balzani, J.-P. Collin, P. Gavin˜a, J.-P. Sauvage and
B. Ventura, J. Am. Chem. Soc., 1999, 121, 4397.
1
1
Fig. 3 A section of the 600 MHz H spectra of the axle 2 and H and
ROESY NMR spectra of the [2]rotaxane 1 recorded in CDCl3 + CD3OD
(600 : 50 mL) and d6-DMSO, showing the NOEs between the axle (x-axis)
and the HA–A9 protons of the macrocycle (y-axis).
10 (a) M. Cavallini, F. Biscarini, S. Leon, F. Zerbetto, G. Bottari and
D. A. Leigh, Science, 2003, 299, 531; (b) A. H. Flood, J. F. Stoddart,
D. W. Steuerman and J. R. Heath, Science, 2004, 306, 2055.
This journal is ß The Royal Society of Chemistry 2005
Chem. Commun., 2005, 4604–4606 | 4605