Chemical Science
Edge Article
has been reported previously11 (see ESI† for more detailed
information).
7 R. Kowalczyk, A. J. F. Edmunds, R. G. Hall and C. Bolm, Org.
Lett., 2011, 13, 768; C. R. Johnson, R. A. Kirchhoff,
R. J. Reischer and G. F. Katekar, J. Am. Chem. Soc., 1973,
95, 4287.
8 T. B. Patrick, K. K. Johri and D. H. White, J. Org. Chem., 1983,
48, 4158.
Conclusions
In summary, we established the rst synthesis of uoromethoxy
aryl ethers by electrochemical uorodecarboxylation of aryloxy-
acetic acids using electric current as traceless oxidant. It
enabled access towards a variety of uoromethoxyarenes. This
electrochemical protocol is very easy to conduct with a simple
9 Q. Lu, T. Benneche, J. Nielsen, C. Christophersen,
¨
R. Gawinecki, G. Hafelinger, M. N. Homsi, F. K. H. Kuske,
¨
M. Haugg, N. Trabesinger-Ruf and E. G. Weinhold, Acta
Chem. Scand., 1996, 50, 850.
setup in undivided cells at constant current conditions with 10 S. Ventre, F. R. Petronijevic and D. W. C. MacMillan, J. Am.
different aryl and heterocyclic moieties and substitution
patterns in yields up to 85%. The successful uorodecarbox-
ylation of natural products and heterocycles demonstrated the
Chem. Soc., 2015, 137, 5654; B. Pieber, M. Shalom,
M. Antonietti, P. H. Seeberger and K. Gilmore, Angew.
Chem., Int. Ed., 2018, 57, 9976.
broad applicability of this method even to demanding 11 M. Rueda-Becerril, O. Mahe, M. Drouin, M. B. Majewski,
substrates. Besides, this electro-conversion is readily scalable
with an increase in yield expected in the distillative solvent
removal from the volatile uoromethyl ethers.
J. G. West, M. O. Wolf, G. M. Sammis and J.-F. Paquin, J.
Am. Chem. Soc., 2014, 136, 2637.
12 Q.-W. Zhang, A. T. Brusoe, V. Mascitti, K. D. Hesp,
D. C. Blakemore, J. T. Kohrt and J. F. Hartwig, Angew.
Chem., Int. Ed., 2016, 55, 9758.
13 X. Yuan, J.-F. Yao and Z.-Y. Tang, Org. Lett., 2017, 19, 1410.
14 J. C. T. Leung and G. M. Sammis, Eur. J. Org. Chem., 2015,
2197.
Conflicts of interest
There are no conicts to declare.
15 H. Kolbe, Ann. Chem. Pharm., 1849, 69, 257.
Acknowledgements
¨
16 H.-J. Schafer, Top. Curr. Chem., 1990, 152, 91.
J. D. H. acknowledges the Friedrich Ebert Foundation for 17 M. Yan, Y. Kawamata and P. S. Baran, Chem. Rev., 2017, 117,
¨
granting a fellowship and S. R. W. thanks the Carl Zeiss Foun-
dation for the research network ELYSION.
13230; A. Wiebe, T. Gieshoff, S. Mohle, E. Rodrigo, M. Zirbes
and S. R. Waldvogel, Angew. Chem., Int. Ed., 2018, 57, 5594.
18 T. Broese and R. Francke, Org. Lett., 2016, 18, 5896;
E. J. Horn, B. R. Rosen, Y. Chen, J. Tang, K. Chen,
M. D. Eastgate and P. S. Baran, Nature, 2016, 533, 77;
S. Lips, D. Schollmeyer, R. Franke and S. R. Waldvogel,
References
1 L. Xing, D. C. Blakemore, A. Narayanan, R. Unwalla,
F. Lovering, R. A. Denny, H. Zhou and M. E. Bunnage,
ChemMedChem, 2015, 10, 715.
2 T. Liang, C. N. Neumann and T. Ritter, Angew. Chem., Int. Ed.,
2013, 52, 8214; F. Leroux, P. Jeschke and M. Schlosser, Chem.
Rev., 2005, 105, 827; B. Manteau, S. Pazenok, J.-P. Vors and
F. R. Leroux, J. Fluorine Chem., 2010, 131, 140; P. Jeschke,
ChemBioChem, 2004, 5, 571; Y. Zhou, J. Wang, Z. Gu,
¨
Angew. Chem., Int. Ed., 2018, 57, 13325; S. Mohle,
M. Zirbes, E. Rodrigo, T. Gieshoff, A. Wiebe and
S. R. Waldvogel, Angew. Chem., Int. Ed., 2018, 57, 6018;
J. L. Rockl, D. Schollmeyer, R. Franke and S. R. Waldvogel,
Angew. Chem., Int. Ed., 2019, 315; E. Rodrigo, H. Baunis,
E. Suna and S. R. Waldvogel, Chem. Commun., 2019, 55,
12255; M. D. Karkas, Chem. Soc. Rev., 2018, 47, 5786;
S. R. Waldvogel, S. Lips, M. Selt, B. Riehl and C. J. Kampf,
Chem. Rev., 2018, 118, 6706.
¨
¨
¨
˜
S. Wang, W. Zhu, J. L. Acena, V. A. Soloshonok, K. Izawa
and H. Liu, Chem. Rev., 2016, 116, 422.
3 E. P. Gillis, K. J. Eastman, M. D. Hill, D. J. Donnelly and 19 T. Fuchigami and S. Inagi, Chem. Commun., 2011, 47, 10211;
¨
N. A. Meanwell, J. Med. Chem., 2015, 58, 8315; H.-J. Bohm,
J. D. Haupt, M. Berger and S. R. Waldvogel, Org. Lett., 2019,
21, 242; G. Laudadio, A. d. A. Bartolomeu,
L. M. H. M. Verwijlen, Y. Cao, K. T. de Oliveira and
¨
D. Banner, S. Bendels, M. Kansy, B. Kuhn, K. Muller,
U. Obst-Sander and M. Stahl, ChemBioChem, 2004, 5, 637;
¨
S. Purser, P. R. Moore, S. Swallow and V. Gouverneur,
T. Noel, J. Am. Chem. Soc., 2019, 141, 11832;
¨
Chem. Soc. Rev., 2008, 37, 320; C. Fah, R. Mathys,
J. D. Herszman, M. Berger and S. R. Waldvogel, Org. Lett.,
2019, 21, 7893; Y. Takahira, M. Chen, Y. Kawamata,
P. Mykhailiuk, H. Nakamura, B. K. Peters, S. H. Reisberg,
C. Li, L. Chen, T. Hoshikawa, T. Shibuguchi and
P. S. Baran, Synlett, 2019, 30, 1178; S. Doobary,
A. T. Sedikides, H. P. Caldora, D. L. Poole and
A. J. J. Lennox, Angew. Chem., Int. Ed., 2020, 59, 1155.
L. A. Hardegger, S. Meyer, D. Bur and F. Diederich, Eur. J.
Org. Chem., 2010, 4617; W. K. Hagmann, J. Med. Chem.,
2008, 51, 4359.
4 P. T. Lowe and D. O'Hagan, J. Fluorine Chem., 2020, 230,
109420.
5 T. G. Miller and J. W. Thanassi, J. Org. Chem., 1960, 25, 2009.
´
6 X. Shen, M. Zhou, C. Ni, W. Zhang and J. Hu, Chem. Sci., 20 X. Luo, X. Ma, F. Lebreux, I. E. Marko and K. Lam, Chem.
2014, 5, 117; Y. Nomura, E. Tokunaga and N. Shibata,
Angew. Chem., Int. Ed., 2011, 50, 1885; Y. Liu, L. Lu and
Q. Shen, Angew. Chem., Int. Ed., 2017, 56, 9930.
Commun., 2018, 54, 9969; G. H. M. de Kruijff and
S. R. Waldvogel, ChemElectroChem, 2019, 6, 4180.
Chem. Sci.
This journal is © The Royal Society of Chemistry 2020