J. Katajisto, H. Lönnberg
FULL PAPER
PPh3 (12 equiv.) in dichloromethane (1 mL) and AcOH (12 equiv.)
was added onto the resin, and then Bu3SnH (12 equiv.) was added.
The mixture was left to stand at room temperature for 20 min. The
resin was filtered, washed/neutralized with 10% pyridine in dichlo-
(400 μL), and the reaction was allowed to proceed at room tem-
perature for 24 h. Sodium methoxide was neutralized with
DOWEX 50WXB-200 (H+). After filtration of the resin, methanol
was removed under reduced pressure, and the dried residue was
romethane, and consecutively washed several times with DMF, dissolved in water, extracted with diethyl ether and evaporated un-
dichloromethane and MeOH, and dried in vacuo. After standard der reduced pressure. The crude product was diluted with 0.1% aq.
Boc removal from the N-terminus, PyBOP (5 equiv.) and DIEA TFA and purified by RP HPLC (for the chromatographic condi-
(10 equiv.) were added onto the resin swelled in DMF (1 mL), and
the cyclization was allowed to proceed overnight at room tempera-
ture. The support was filtered, washed with DMF, dichloromethane
and MeOH, and dried under reduced pressure. At this stage, a
small aliquot of the solid support was withdrawn from the synthesis
column, and the authenticity of 20–22 was verified by HRMS
(Table 1) of the analytical HPLC samples. An additional piperidine
treatment was conducted at the end of the synthesis of conjugate
22 to remove the Fmoc protection from the side chain amino func-
tion of the lysine residue prior the cleavage from the support. The
cyclic conjugates were then cleaved from the solid support. The
resin was first swollen with a small amount of dichloromethane
and 1 mL of 0.1% HBr in AcOH was added. The mixture was
shaken for 2 h at room temperature. The support was filtered,
washed with dichloromethane and MeOH, and dried in vacuo. The
resin was suspended in a mixture of TFA in dichloromethane
(1 mL, 1:1, v/v). After shaking for 2 h at room temperature, the
solution was collected by filtration and the solvents evaporated to
dryness, affording 20–22 as crude reaction products. The residues
were diluted with a mixture of 0.1% aq. TFA and EtOH and puri-
fied by HPLC. The conjugates 21 and 22, which were prepared in
a larger quantity, were further characterized by 1H NMR spec-
troscopy. PDQF and HMBC spectra were also utilized.
tions, see Supporting Information) to afford 23 in a 71 % yield
(0.6 mg). HRMS (ESI) [M + Na]+ calcd. 660.2335, obsd. 660.2358.
Acknowledgments
The authors wish to thank Dr. Jari Sinkkonen for performing the
1H NMR analysis on Bruker 600 NMR spectrometer and Dr. Harri
Hakala for performing the HRMS analysis.
[1] a) R. A. Dwek, Chem. Rev. 1996, 96, 683–720; b) B. E. Collins,
J. C. Paulson, Curr. Opin. Chem. Biol. 2004, 8, 617–625.
[2] Y. C. Lee, R. T. Lee, Acc. Chem. Res. 1995, 28, 321–327.
[3] M. Mammen, S. Choi, G. M. Whitesides, Angew. Chem. Int.
Ed. Engl. 1998, 37, 2755–2794.
[4] N. Sharon, H. Lis, Science 1989, 246, 227–234.
[5] M. E. Taylor, K. Bezousˇka, K. Drickamer, J. Biol. Chem. 1992,
267, 1719–1726.
[6] S. M. Dimick, S. C. Powell, S. A. McMahon, D. N. Moothoo,
J. H. Naismith, E. J. Toone, J. Am. Chem. Soc. 1999, 121,
10286–10296.
[7] a) A. Sreedhara, J. A. Cowan, J. Biol. Inorg. Chem. 2001, 6,
166–172; b) S. Hanessian, D. Qiu, H. Prabhanjan, G. V. Reddy,
B. Lou, Can. J. Chem. 1996, 74, 1738–1747; c) H. C. Hansen,
S. Haataja, J. Finne, G. Magnusson, J. Am. Chem. Soc. 1997,
119, 6974–6979; d) S. Hanessian, H. Prabhanjan, Synlett 1994,
868–870; e) J. Lehmann, M. Scheuring, Carbohydr. Res. 1995,
276, 57–74; f) J. Lehmann, U. P. Weitzel, Carbohydr. Res. 1996,
294, 65–94; g) G. H. Veeneman, R. G. A. van der Hulst,
C. A. A. van Boeckel, R. L. A. Philipsen, G. S. F. Ruigt,
J. A. D. M. Tonnaer, T. M. L. van Delft, P. N. M. Konings, Bi-
oorg. Med. Chem. Lett. 1995, 5, 9–14; h) T. K. Lindhorst, M.
Dubber, U. Krallmann-Wenzel, S. Ehlers, Eur. J. Org. Chem.
2000, 2027–2034; i) B. Liu, R. Roy, J. Chem. Soc. Perkin Trans.
1 2001, 8, 773–779; j) N. Frison, M. E. Taylor, E. Soilleux, M.
Bousser, R. Mayer, M. Monsigny, K. Drickamer, A. Roche, J.
Biol. Chem. 2003, 278, 23922–23929; k) K. Sato, N. Hada, T.
Takeda, Tetrahedron Lett. 2003, 44, 9331–9335; l) S. A. Kalovi-
douris, O. Blixt, A. Nelson, S. Vidal, W. B. Turnbull, J. C. Paul-
son, J. F. Stoddart, J. Org. Chem. 2003, 68, 8485–8493; m) T.
Amaya, H. Tanaka, T. Takahashi, Synlett 2004, 497–502; n) O.
Hayashida, K. Mizuki, K. Akagi, A. Matsuo, T. Kanamori, T.
Nakai, S. Sando, Y. Aoyama, J. Am. Chem. Soc. 2003, 125,
594–601; o) M. A. Leeuwenburgh, G. A. van der Marel, H. S.
Overkleeft, Curr. Opin. Chem. Biol. 2003, 7, 757–765; p) Y.
Gao, A. Eguchi, K. Kakehi, Y. C. Lee, Org. Lett. 2004, 6, 3457–
3460; q) M. Köhn, J. M. B. Hernandez, C. Ortiz Mellet, T. K.
Lindhorst, J. M. García Fernández, ChemBioChem 2004, 5,
771–777; r) N. Röckendorf, T. K. Lindhorst, J. Org. Chem.
2004, 69, 4441–4445; s) U. Schädel, F. Sansone, A. Casnati, R.
Ungaro, Tetrahedron 2005, 61, 1149–1154.
Cyclo[Glu-Glc(Tol)3-Ala-Gal(Tol)3] (21): The overall isolated yield:
20%: 1H NMR ([D6]DMSO, 600 MHz): δ = 7.89 (dd, 2 H, H-Tol),
7.73–7.81 (m, 7 H, H-Tol), 7.65 (br. s, 1 H, NH), 7.60 (m, 2 H, H-
Tol), 7.52 (m, 2 H, H-Tol), 7.40, 7.26–7.31 (m, 7 H, H-Tol), 7.19
(m, 2 H, H-Tol), 7.14 (d, 2 H, H-Tol), 6.78 (m, 1 H, NH), 6.69 (m,
1 H, NH), 5.88 (m, J = 9.5 Hz, GlcH-3), 5.76 (m, 2 H, NH, GalH-
3), 5.53 (t, J = 9.3 Hz, 1 H, GlcH-4), 5.42 (m, 2 H, GalH-2,4), 5.14
(t, J = 9.5 Hz, GlcH-2), 4.23 (m, 1 H, GlcH-5), 3.99–4.09 (m, 6 H,
GalH-1,5,6, GlcH-1,6, AlaH-α), 3.82 (m, 2 H, GalH-6Ј, GluH-α),
3.75 (m, 1 H, GalH-7), 3.50 (br. s, H2O residual peak), 3.33 (m, 1
H, GlcH-6Ј), 3.28 (m, 1 H, GlcH-7), 3.10 (m, 1 H, GlcH-7Ј), 2.97
(m, 1 H, GalH-7Ј), 2.42 (s, 3 H, Tol CH3), 2.33 (m, 9 H, Tol CH3),
2.26 (m, 6 H, Tol CH3), 1.98 (m, 2 H, GluH-γ), 1.75 (m, 1 H,
GluH-β), 1.65 (m, 1 H, GluH-βЈ), 1.15 and 0.98 (two d, 3 H, AlaH-
β) ppm. The 1H NMR spectrum also exhibited smaller peaks at
5.99, 5.91, 5.24 and 1.50 as well as smaller overlapping peaks at
4.35 and 1.78 ppm, presumably due to slow conformational ex-
change at ambient temperature.
Cyclo[Glu-Glc(Tol)3-Lys-Glc(Tol)3] (22): The overall isolated yield:
1
24%: H NMR ([D6]DMSO, 600 MHz): δ = 7.75 (m, 8 H, H-Tol),
7.68 (m, 2 H, NH), 7.59 (m, 4 H, NH), 7.53 (t, 2 H, NH), 7.28 (m,
10 H, H-Tol), 7.20 (m, 6 H, H-Tol), 5.92 (m, J = 8.2 and 9.5 Hz Hz,
2 H, GlcH-3), 5.60 (q, J = 8.2 and 9.5 Hz Hz, 2 H, GlcH-4), 5.15
(t, J = 9.5 Hz, 2 H, GlcH-2), 4.18 (t, J = 10.1 Hz, 2 H, GlcH-5),
4.03–4.13 (m, 4 H, GlcH-1,7), 3.78–3.84 (m, 4 H, LysH-α, GluH-
α), 3.66 (br. s, H2O residual peak), 3.26–3.42 (m, 4 H, GlcH-6,7Ј),
3.17–3.24 (m, 2 H, GlcH-6Ј), 2.73 (m, 2 H, LysH-ε), 2.33 (br. s, 12
H, Tol CH3), 2.28 (br. s, 6 H, Tol CH3), 1.91–2.10 (m, 2 H, GluH-
γ), 1.83 (m, 1 H, GluH-β), 1.72 (m, 1 H, GluH-βЈ), 1.63 (m, 1 H,
LysH-β), 1.48 (m, 3 H, LysH-βЈ,δ), 1.23 (br. s, 2 H, LysH-γ) ppm.
[8] a) R. Roy, D. Zanini, S. J. Meunier, A. Romanowska, J. Chem.
Soc. Chem. Commun. 1993, 1869–1872; b) D. Pagé, D. Zanini,
R. Roy, Bioorg. Med. Chem. 1996, 4, 1949–1961; c) J. Jezek, J.
ˇ
Velek, P. Veprˇek, V. Velková, T. Trnka, J. Pecka, M. Ledvina,
J. Vondrásˇek, M. Písacˇka, J. Pept. Sci. 1999, 5, 46–55; d) T. K.
Lindhorst, M. Dubber, Org. Lett. 2001, 3, 4019–4022; e) R.
Roy, J. M. Kim, Tetrahedron 2003, 59, 3881–3893; f) M. M. K.
Boysen, K. Elsner, O. Sperling, T. K. Lindhorst, Eur. J. Org.
Chem. 2003, 4376–4386; g) E. Arce, P. M. Nieto, V. Diaz, R.
Garcia Castro, A. Bernad, J. Rojo, Bioconjugate Chem. 2003,
14, 817–823; h) J. Sakamoto, K. Mullen, Org. Lett. 2004, 6,
Deprotection of 21: Compound 21 (1.8 mg, 1.34 μmol) was dis-
solved in dry 50 mmol·L–1 sodium methoxide in methanol
3524
© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2005, 3518–3525