C O M M U N I C A T I O N S
Table 1. [4 + 2] Cycloaddition of Steroidal D-ring Dienes with Singlet Oxygen
a Calculated by crude 1H NMR spectrum; ns ) not separated. b Isolated yields. c Structure confirmed by X-ray crystallography. See Supporting Information.
In conclusion, the above synthesis affords a new, practical route
to the South 7 hemisphere 28 in 20% overall yield over 16
operations from hecogenin acetate 1. This compares with our first-
generation synthesis that required 25 operations with an overall
yield of 2%.11 In addition, this communication provides a biomi-
metic strategy potentially appropriate for a vastly improved
synthesis of the crucial North 1 hemisphere and its analogues.
Figure 1. Molecular models of C-22 propylene glycol ketals.
Acknowledgment. This work was supported by the National
Institute of Health (CA 60548). We thank Dr. Phillip Fanwick and
Arlene Rothwell for providing the X-ray and MS data.
Scheme 3. Completion of Synthesis of South 7 (28)
Supporting Information Available: Extended discussion, experi-
mental procedures, and 1H, 13C spectra. This material is available free
References
(1) LaCour, T. G.; Guo, C.; Bhandaru, S.; Boyd, M. R.; Fuchs, P. L. J. Am.
Chem. Soc. 1998, 120, 692.
(2) (a) Li, W.; LaCour, T. G.; Fuchs, P. L. J. Am. Chem. Soc. 2002, 124,
4548. (b) Li, W.; Fuchs, P. L. Org. Lett. 2003, 5, 2849.
(3) (a) LaCour, T. G.; Guo, C.; Bhandaru, S.; Boyd, M. R.; Fuchs, P. L. J.
Am. Chem. Soc. 1998, 120, 692. (b) Lee, J. S.; Fuchs, P. L. Org. Lett.
2003, 5, 2247.
(4) (a) Fell, J. D.; Heathcock, C. H. J. Org. Chem. 2002, 67, 4742. (b) Ba¨sler,
S.; Brunck, A.; Jautelat, R.; Winterfeldt, E. HelV. Chim. Acta 2000, 83,
1854.
(5) (a) Marker, R. E.; Rohrmann, E. J. Am. Chem. Soc. 1939, 61, 3592. (b)
Marker, R. E.; Rohrmann, E. J. Am. Chem. Soc. 1940, 62, 518. (c)
Micovic, I. V.; Invanovic, M. D.; Piatak, D. M. Synthesis 1990, 591. (d)
Tavares, R.; Randoux, T.; Braekman, J.; Daloze, D. Tetrahedron 1993,
49, 5079. (e) Borah, P.; Chowdhury, P. Ind. J. Chem., Sect. B: Org. Chem.
Incl. Med. Chem. 1998, 37B, 408. (f) Haeuser, H. German Patent
DE19635418, 1997. (g) Chowdhury, P. K.; Bordoloi, M. J.; Barua, N.
C.; Sarmah, H. P.; Goswami, P. K.; Sharma, R. P.; Barua, A. P.; Mathur,
R. K.; Ghosh, A. C. U.S. Patent 5808117, 1998.
(6) Lee, J. S.; Fuchs, P. L. Org. Lett. 2003, 5, 3619.
(7) (a) Lee, S.; LaCour, T. G.; Lantrip, D.; Fuchs, P. L. Org. Lett. 2002, 4,
313. (b) Lee, S.; Fuchs, P. L. Org. Lett. 2002, 4, 317.
(8) (a) Ishihara, K.; Karumi, Y.; Kubota, M.; Yamamoto, H. Synlett 1996,
839. (b) Fukuzawa, S.; Tsuchimoto, T.; Hotaka, T.; Hiyama, T. Synlett
1995, 1077.
to ketone 7 and test the plan for formation of spiroketal 9 (Scheme
1) by selective monodeprotection at C-25,26.
After many unsuccessful attempts at ketal deprotection, treatment
of 23a-r via HCN catalysis (controlled release from aqueous
DDQ)10 afforded the unexpected, but welcome, hydroxypropyl ether
25, presumably via ketal participation followed by hydrolysis of
intermediate oxonium ion 24. Oxidation to 26, concurrent cleavage
of silyl ether and acrolein gives 27, which, upon a finishing
acidification, directly gave the South 7 spiroketal 28 in 66% yield
accompanied by the C-25 diastereomer 28-epi, resulting from
parallel processing of the inseparable C-25 diol carried forward
from the stage of the Sharpless AD reaction (Supporting Informa-
tion).
(9) Corey, E. J.; Trybulski, E. J.; Suggs, J. W. Tetrahedron Lett. 1976, 17,
4577.
(10) Oku, A.; Kinugasa, M.; Kamada, T. Chem. Lett. 1993, 163.
(11) (a) Jeong, J. U.; Fuchs, P. L. Tetrahedron Lett. 1994, 35, 5385. (b) Jeong,
J. U.; Fuchs, P. L. Tetrahedron Lett. 1995, 36, 2431.
JA0531935
9
J. AM. CHEM. SOC. VOL. 127, NO. 38, 2005 13123