Published on Web 09/08/2005
Chemical Synthesis of 23 kDa Glycoprotein by Repetitive
Segment Condensation: A Synthesis of MUC2 Basal Motif
Carrying Multiple O-GalNAc Moieties
Hironobu Hojo,*,† Yoshiyuki Matsumoto,† Yuko Nakahara,† Emi Ito,‡
Yusuke Suzuki,‡ Minoru Suzuki,‡ Akemi Suzuki,‡ and Yoshiaki Nakahara*,†
Contribution from the Department of Applied Biochemistry, Institute of Glycotechnology,
Tokai UniVersity, Kitakaname 1117, Hiratsuka, Kanagawa 259-1292, Japan, and Sphingolipid
Expression Laboratory, RIKEN Frontier Research System, Wako 351-0198, Japan
Received June 6, 2005; E-mail: hojo@keyaki.cc.u-tokai.ac.jp
Abstract: Peptide thioester corresponding to a MUC2 tandem repeat unit, which retains seven GalNAc
moieties, was prepared by the Fmoc method followed by the low TfOH treatment to remove benzyl groups
at the carbohydrate portions. The glycosylated peptide thioester was then consecutively joined by the
activation of a thioester group by silver ions to obtain a MUC2 tandem repeat model composed of 141
amino acids with 42 GalNAc moieties.
Introduction
It is known that in the course of malignant transformation, the
synthesis of O-glycan becomes incomplete and short carbohy-
The carbohydrate on proteins, which is usually attached to
the peptide backbone via N- or O-linkage, has been shown to
play essential roles in many biological processes, such as protein
folding, cell-cell interaction, and tumor metastasis.1 However,
the details of these functions are not yet known, which mainly
derive from the microheterogeneity of the carbohydrate portion.
In the case of N-linked carbohydrate, the glycosylation usually
occurs at the consensus sequence of Asn-X-Ser/Thr. In addition,
the structure around the reducing end region is common to all
N-linked glycans. In contrast, the site of O-glycosylation, which
is typically found in the tandem repeat region of mucins, is
solely determined by the action of glycosyl transferases, which
cannot be predicted at present. Furthermore, the mucin-type
O-glycan has a more diverse structure compared to that of the
N-glycan and usually exists in a dense clustered form. Due to
these complex features, the functional and structural analysis
of mucins remains a difficult task.
drates, such as Tn (R-GalNAc), T (Gal-GalNAc), and sialyl-
Tn antigen, are highly expressed on mucins. Synthetic models
have been used to characterize the epitope structure of these
tumor-associated mucins13,14 and to develop efficient cancer
vaccines.15,16 Synthetic models have also been used as substrates
to analyze the specificity of various glycosyl transferases as
well as for structural characterization of mucins.17-24 Most of
these studies use glycopeptide models composed of a single
repeat sequence or a sequence within a repeat unit to eliminate
difficulties associated with the repeating character of mucins.
It has been made clear that the binding of monoclonal antibodies
(12) The synthesis of glycoprotein containing a mucin-like tandem repeat domain
using expressed protein ligation is also reported: Macmillan, D.; Bertozzi,
C. R. Angew. Chem., Int. Ed. 2004, 43, 1355-1359.
(13) Live, D. H.; Williams, L. J.; Kuduk, S. D.; Schwarz, J. B.; Glunz, P. W.;
Chen, X.-T.; Sames, D.; Kumar, R. A.; Danishefsky, S. J. Proc. Natl. Acad.
Sci. U.S.A. 1999, 96, 3489-3493.
(14) Moller, H.; Serttas, N.; Paulsen, H.; Burchell, J. M.; Taylor-Papadimitriou,
J.; Meyer, B. Eur. J. Biochem. 2002, 269, 1444-1455.
To overcome these difficulties, various homogeneous gly-
copeptides have been synthesized as models of natural mucins.2-12
(15) Kuduk, S. D.; Schwarz, J. B.; Chen, X. T.; Glunz, P. W.; Sames, D.;
Ragupathi, G.; Livingston, P. O.; Danishefsky, S. J. J. Am. Chem. Soc.
1998, 120, 12474-12485.
(16) Ragupathi, G.; Coltart, D. M.; Willliams, L. J.; Koide, F.; Kagan, E.; Allen,
J.; Harris, C.; Glunz, P. W.; Livingston, P. O.; Danishefsky, S. J. Proc.
Natl. Acad. Sci. U.S.A. 2002, 99, 13699-13704.
† Tokai University.
‡ RIKEN Frontier Research System.
(1) Dwek, R. A. Chem. ReV. 1996, 96, 683-720.
(2) Peters, S.; Bielfeldt, T.; Meldal, M.; Bock, K.; Paulsen, H. Tetrahedron
Lett. 1991, 32, 5067-5070.
(17) Wu, W.-G.; Pasternack, L.; Huang, D.-H.; Koeller, K. M.; Lin, C.-C.; Seitz,
O.; Wong, C.-H. J. Am. Chem. Soc. 1999, 121, 2409-2417.
(18) Naganagowda, G. A.; Gururaja, T. L.; Satyanarayana, J.; Levine, M. J. J.
Peptide Res. 1999, 54, 290-310.
(3) Bielfeldt, T.; Peters, S.; Meldal, M.; Bock, K.; Paulsen, H. Angew. Chem.,
Int. Ed. Engl. 1992, 31, 857-859.
(19) Kirnarsky, L.; Prakash, O.; Vogen, S. M.; Nomoto, M.; Hollingsworth, M.
A.; Sherman, S. Biochemistry 2000, 39, 12076-12082.
(4) Mathieux, N.; Paulsen, H.; Meldal, M.; Bock, K. J. Chem. Soc., Perkin
Trans. 1 1997, 2359-2368.
(20) Satyanarayana, J.; Gururaja, T. L.; Narasimhamurthy, S.; Naganagowda,
G. A.; Levine, M. J. Biopolymers 2001, 58, 500-510.
(5) Klich, G.; Paulsen, H.; Meyer, B.; Meldal, M.; Bock, K. Carbohydr. Res.
1997, 299, 33-48.
(21) Hanisch, F.-G.; Reis, C. A.; Clausen, H.; Paulsen, H. Glycobiology 2001,
11, 731-740.
(6) Schwarz, J. B.; Kuduk, S. D.; Chen, X.-T.; Sames, D.; Glunz, P. W.;
Danishefsky, S. J. J. Am. Chem. Soc. 1999, 121, 2662-2673.
(7) Glunz, P. W.; Hintermann, S.; Williams, L. J.; Schwarz, J. B.; Kuduk, S.
D.; Kudryashov, V.; Lloyd, K. O.; Danishefsky, S. J. J. Am. Chem. Soc.
2000, 122, 7273-7279.
(22) Coltart, D. M.; Ryyuru, A. K.; Williams, L. J.; Glunz, P. W.; Sames, D.;
Kuduk, S. D.; Schwarz, J. B.; Chen, X. T.; Danishefsky, S. J.; Live, D. H.
J. Am. Chem. Soc. 2002, 124, 9833-9844.
(23) Kinarsky, L.; Suryanarayanan, G.; Prakash, O.; Paulsen, H.; Clausen, H.;
Hanisch, F.-G.; Hollingsworth, M. A.; Sherman, S. Glycobiology 2003,
13, 929-939.
(8) Dziadek, S.; Kunz, H. Synlett 2003, 1623-1626.
(9) Brocke, C.; Kunz, H. Synlett 2003, 2052-2056.
(10) Brocke, C.; Kunz, H. Synthesis 2004, 525-542.
(11) Dziadek, S.; Brocke, C.; Kunz, H. Chem.sEur. J. 2004, 10, 4150-4162.
(24) Brokx, R. D.; Revers, L.; Zhang, Q.; Yang, S.; Mal., T. K.; Ikura, M.;
Gariepy, J. Biochemistry 2003, 42, 13817-13825.
9
13720
J. AM. CHEM. SOC. 2005, 127, 13720-13725
10.1021/ja053711b CCC: $30.25 © 2005 American Chemical Society