Organometallics 2005, 24, 4899-4901
4899
Ruthenium-Mediated Insertion of an Unsaturated C4
Unit into the P-N Bond of an Aminophosphine Ligand
Sonja Pavlik,† Florian Jantscher,† Kurt Mereiter,‡ and Karl Kirchner*,†
Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics,
Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
Received August 9, 2005
Scheme 1
Summary: The reactions of 1,6-heptadiyne and 1,7-
octadiyne with [RuCp(PPh2NEt2)(CH3CN)2]+ afford the
η3-phosphaallyl-η2-vinylamine complexes [RuCp(η3-
(P,C,C)-PPh2CHdC(CH2)n-η2(C,C)-CdCHNEt2)]+ (n ) 3,
4), which cleanly rearrange to give the η1-phosphaallyl-
η3-azaallyl complexes [RuCp(η1(P)-PPh2CHdC(CH2)n-η3-
(C,C,N)-CCHNEt2)]+ (n ) 3, 4).
The labile complexes [RuCp(PR3)(CH3CN)2]PF6 (R )
alkyl, aryl) are synthons for the 14-electron fragments
[RuCp(PR3)]+, promoting the oxidative coupling of
alkynes to eventually give ruthenium allyl carbenes.1
These, in turn, behave as masked 16e complexes which
are capable of activating C-H bonds of alkyl and aryl
substituents of the phosphine ligands to afford η4-
butadiene complexes according to Scheme 1.2 With
aminophosphine ligands of the type PR2NHR′ instead
of PR3, N-H bond activation rather than C-H bond
activation is observed. In this way amido-η4-butadiene
complexes are obtained (Scheme 2).3,4 In this context
we found it interesting to switch over to aminophos-
phine ligands lacking N-H bonds in order to see
whether C-H bond activation processes become pre-
dominant again. Here we give a preliminary account of
these investigations and report the reaction of [RuCp-
(PPh2NEt2)(CH3CN)2]PF6 (1) with diynes, revealing an
unusual insertion of an unsaturated carbon C4 chain
into the P-N bond of the aminophosphine ligand. As a
result of this transformation, phosphaallyl and azaallyl
complexes are formed.
Scheme 2
Treatment of 1 with 1,6-heptadiyne results within a
few minutes in the formation of the η3-phosphaallyl-
η2-vinylamine [RuCp(η3(P,C,C)-PPh2CHC(CH2)3-η2(C,C)-
CdCHNEt2)]+ (2a) in high yield (Scheme 3).6,7 At
elevated temperature (80 °C) 2a isomerizes cleanly to
afford the thermodynamically more stable η1-phos-
phaallyl-η3-azaallyl complex [RuCp(η1(P)-PPh2CHd
C(CH2)3-η3(C,C,N)-CCHNEt2)]+ (3a) in 85% isolated
yield.8 With 1,7-octadiyne the analogous phosphaallyl-
azaallyl complex 2b is formed, as monitored by 1H and
31P{1H} NMR spectroscopy, but rearranges already at
room temperature to give the corresponding η1-phos-
phaallyl-η3-azaallyl complex 3b. Compounds 2a, 3a,
and 3b, which are air-stable both in solution and in the
solid state, were fully characterized by 1H, 13C{1H}, and
31P{1H} NMR spectroscopy as well as by elemental
analysis. The 1H NMR spectroscopic data for 2a include
characteristic resonances at 4.01 (d, 2JHP ) 4.7 Hz) and
† Institute of Applied Synthetic Chemistry.
‡ Institute of Chemical Technologies and Analytics.
(1) Schmid, R.; Kirchner, K. Eur. J. Inorg. Chem. 2004, 2609.
(2) Ru¨ba, E.; Mereiter, K.; Schmid, R.; Kirchner, K.; Bustelo, E.;
Puerta, M. C.; Valerga, P. Organometallics 2002, 21, 2912.
(3) Pavlik, S.; Mereiter, K.; Schmid, R.; Kirchner, K. Organometallics
2003, 22, 1771.
(4) Jimenez-Tenorio, M.; Puerta, M. C.; Valerga, P. Eur. J. Inorg.
Chem. 2005, 2631.
(5) For related ruthenium η3-phosphaallyl complexes see: (a) Ji, H.
L.; Nelson, J. H.; DeCian, A.; Fischer, J.; Solujic, L.; Milosavljevic, E.
B. Organometallics 1992, 11, 401. (b) Barthel-Rosa, L. P.; Maitra, K.;
Fischer, J.; Nelson, J. H. Organometallics 1997, 16, 1714. (c) Durac-
zynska, D.; Nelson, J. H. Dalton Trans. 2003, 449. (d) Duraczynska,
D.; Nelson, J. H. Dalton Trans. 2005, 92.
F. Mercier, F.; Hugel-LeGoff, C.; Ricard, L.; Mathey, F. J. Organomet.
Chem. 1990, 398, 389. (h) Hugel-LeGoff, C.; Mercier, F.; Ricard, L.;
Mathey, F. J. Organomet. Chem. 1989, 363, 325. (i) Mercier, F.;
Mathey, F. Organometallics 1990, 9, 863.
(7) For a recent review of azaallyl complexes see: Caro, C. F.;
Lappert, M. F.; Merle, P. G. Coord. Chem. Rev. 2001, 219-221, 605.
(8) Watson, L. A.; Franzman, B.; Bollinger, J. C.; Caulton, K, G.
New J. Chem. 2003, 27, 1769.
(6) (a) Appel, R.; Schuhn, W.; Knoch, F. Angew. Chem., Int. Ed. Engl.
1985, 24, 420. (b) Mathey, F. J. Organomet. Chem. 1990, 400, 149. (c)
Nixon, J. F. Chem. Rev. 1988, 88, 1353. (d) Mercier, F.; Fischer, J.;
Mathey, F. Angew. Chem., Int. Ed. Engl. 1986, 25, 357. (e) Mercier,
F.; Hugel-LeGoff, C.; Mathey, F. Organometallics 1988, 7, 955. (f)
Niecke, E.; Kramer, B.; Nieger, M. Organometallics 1991, 10, 10. (g)
10.1021/om050688u CCC: $30.25 © 2005 American Chemical Society
Publication on Web 09/10/2005