Synthesis of [(PdMe)2{l-j2(P,P)Cy2PCH2PCy2}2(l-F)][FHF]
References
(2c)
1 R. G. Pearson, J. Am. Chem. Soc., 1963, 85, 3533–3539; R. G. Parr
and R. G. Pearson, J. Am. Chem. Soc., 1983, 105, 7512–7516; R. G.
Pearson, Proc. Natl. Acad. Sci. USA, 1986, 83, 8440–8441; R. G.
Pearson, Chemical Hardness, Wiley, Weinheim, 1997.
2 B. L. Pagenkopf and E. M. Carreira, Chem. Eur. J., 1999, 5, 3437–
3442; K. Fagnou and M. Lautens, Angew. Chem., 2002, 114, 26–49;
K. Fagnou and M. Lautens, Angew. Chem., Int. Ed., 2002, 41, 26–47.
3 P. Barthazy, L. Hintermann, R. M. Stoop, M. Woerle, A. Mezzetti
and A. Togni, Helv. Chim. Acta, 1999, 82, 2448–2453; P. Barthazy,
A. Togni and A. Mezzetti, Organometallics, 2001, 20, 3472–3477;
P. Barthazy, R. M. Stoop, M. Woerle, A. Togni and A. Mezzetti,
Organometallics, 2000, 19, 2844–2852; R. Dorta, P. Egli, F. Zu¨rcher
and A. Togni, J. Am. Chem. Soc., 1997, 119, 10857–10858.
A solution of [PdMe2(Cy2PCH2PCy2)] (1) (291 mg, 0.53 mmol)
in toluene (20 mL) was treated with a solution of Et3N·3HF
in THF (180 lL, 0.18 mmol). After 3 h stirring at room
temperature, the yellow suspension was filtered. The colourless
residue was washed twice with toluene (5 mL) and dried
under vacuum. Yield 102 mg (35%) (Found: C, 61.59; H,
9.38. C52H99F3P4Pd requires C, 61.74; H, 9.86%). The NMR
spectroscopic data of the cation are similar to the data obtained
for 2a. Molar conductivity (KM/S cm2 mol−1) = 42. The anion
has been identified by comparison of the NMR and IR data
with these in the literature.16,39,41
4 A. Mezzetti and C. Becker, Helv. Chim. Acta, 2002, 85, 2686–2703;
C. Becker, I. Kieltsch, D. Broggini and A. Mezzetti, Inorg. Chem.,
2003, 42, 8417–8429.
Synthesis of [(PdMe)2{l-j2(P,P)Ph2PCH2PPh2}2(l-F)][FHF]
5 E. F. Murphy, R. Murugavel and H. W. Roesky, Chem. Rev., 1997,
97, 3425–3468; N. M. Doherty and N. W. Hoffman, Chem. Rev.,
1991, 91, 553–573; H. C. S. Clark and J. H. Holloway, in Advanced
(5c)
A solution of [PdMe2(Me2NCH2CH2NMe2)] (4) (273 mg,
1.08 mmol) in THF (7 mL) was treated with Ph2PCH2PPh2
(436 mg, 1.13 mmol). The solution was stirred for 5 min and a
solution of Et3N·3HF in THF (55 lL, 0.54 mmol) was added.
After 2 h stirring at room temperature, the yellow suspension
was filtered. The colourless residue was washed twice with
THF (5 mL) and dried under vacuum. Yield 191 mg (16%)
(Found: C, 64.68; H, 5.23. C52H51F3P4Pd requires C, 64.84;
ˇ
Inorganic Fluorides, ed. T. Nakajima, B. Zemva and A. Tressaud,
Elsevier, Amsterdam, 2000, pp. 51–78.
6 T. Braun, R. N. Perutz and M. I. Sladek, Chem. Commun., 2001,
2254–2255; O. Pierrat, P. Gros and Y. Fort, Org. Lett., 2005, 7, 697–
700.
7 V. V. Grushin, Chem. Eur. J., 2002, 8, 1006–1014; V. V. Grushin,
Angew. Chem., 1998, 110, 1042–1044; V. V. Grushin, Angew. Chem.,
Int. Ed., 1998, 37, 994–996.
1
8 P. Nilsson, F. Plamper and O. F. Wendt, Organometallics, 2003, 22,
5235–5242.
H, 5.34%). NMR spectroscopic data of the cation: H NMR
(500 MHz, CD2Cl2): d 7.42–7.24 (m, 40 H, Ph), 3.86 (m, d
9 S. A. Macgregor and D. MacQueen, Inorg. Chem., 1999, 38, 4868–
4876; A. Kovacs and G. Frenking, Organometallics, 2001, 20, 2510–
2524.
10 K. G. Caulton, New J. Chem., 1994, 18, 25–41; J. P. Flemming, M. C.
Pilon, O. Y. Borbulevitch, M. Y. Antipin and V. V. Grushin, Inorg.
Chim. Acta, 1998, 280, 87–98; D. N. Branan, N. W. Hoffman, E. A.
McElroy, N. C. Miller, D. L. Ramage, A. F. Schott and S. H. Young,
Inorg. Chem., 1987, 26, 2915–2917.
11 T. J. Poulton, M. P. Sigalas, K. Folting, W. E. Streib, O. Eisenstein
and K. G. Caulton, Inorg. Chem., 1994, 33, 1476–1485; F. Abu-
Hasanayn, A. S. Goldman and K. Krogh-Jespersen, Inorg. Chem.,
1994, 33, 5122–5130; M. Tilset, J. R. Hamon and P. Hamon, Chem.
Commun., 1998, 765–766; M. Tilset, I. Fjeldahl, J. R. Hamon, P.
Hamon, L. Toupet, J. Y. Saillard, K. L. Costuas and A. Haynes,
J. Am. Chem. Soc., 2001, 123, 9984–10000.
12 W. J. Marshall, D. L. Thorn and V. V. Grushin, Organometallics,
1998, 17, 5427–5430.
13 D. Moigno, W. Kiefer, B. Callejas-Gaspar, J. Gil-Rubio and H.
Werner, New J. Chem., 2001, 25, 1389–1397; D. Moigno, B. Callejas-
Gaspar, J. Gil-Rubio, H. Werner and W. Kiefer, J. Organomet. Chem.,
2002, 661, 181–190.
14 H. W. Roesky and I. Haiduc, J. Chem. Soc., Dalton Trans., 1999,
2249–2264; L. Brammer, Dalton Trans., 2003, 3145–3157.
15 N. A. Jasim, R. N. Perutz and S. J. Archibald, Dalton Trans., 2003,
2184–2187.
16 N. A. Jasim and R. N. Perutz, J. Am. Chem. Soc., 2000, 122, 8685–
8693; N. A. Jasim, R. N. Perutz, S. P. Foxon and P. H. Walton,
J. Chem. Soc., Dalton Trans., 2001, 1676–1685; M. K. Whittlesey,
R. N. Perutz, B. Greener and M. H. Moore, Chem. Commun., 1997,
187–188.
17 V. V. Grushin and W. J. Marshall, Angew. Chem., 2002, 114, 4656–
4659; V. V. Grushin, Angew. Chem., Int. Ed., 2002, 41, 4476–4479.
18 D. Noveski, T. Braun and S. Kru¨ckemeier, J. Fluorine Chem., 2003,
125, 959–966.
19 M. C. Pilon and V. V. Grushin, Organometallics, 1998, 17, 1774–1781;
D. C. Roe, W. J. Marshall, F. Davidson, P. D. Soper and V. V. Grushin,
Organometallics, 2000, 19, 4575–4582.
20 K. S. Coleman, J. H. Holloway, E. G. Hope and J. Langer, J. Chem.
Soc., Dalton Trans., 1997, 4555–4560.
21 N. A. Jasim, R. N. Perutz, A. C. Whitwood, T. Braun, J. Izundu, B.
Neumann, S. Rothfeld and H.-G. Stammler, Organometallics, 2004,
23, 6140–6149.
1
in 31P{ H}, JHH = 13.4 Hz, 2H, CHAHB), 3.36 (m, 2H, d in
1
31P{ H}, JHH = 13.4 Hz, CHAHB), 0.43 (m, 6 H, PdCH3).
1
31P{ H} NMR (202.5 MHz, CD2Cl2): d 13.8 (d, JPF = 15.4 Hz).
19F NMR (470.4 MHz, CD2Cl2): d −377 (m, br, PdF). Molar
conductivity (KM/S cm2 mol−1) = 38. The anion has been
identified by comparison of the NMR and IR data with these in
the literature.16,39,41
Formation of [(PdClMe)2{l-j2(P,P)Ph2PCH2PPh2}2] (6)
A solution of 5c (12 mg, 0.01 mmol) in CD2Cl2 (0.6 mL)
was treated with Me3SiCl (23 lL, 0.12 mmol). The NMR
spectroscopic data reveal the formation of 6.31
Structure determination for complex 5c·2THF
Colourless crystals of 5c·2THF were obtained at 20 ◦C from a
solution in THF. Diffraction data were collected for a fragment
with the dimensions 0.20 × 0.10 × 0.07 mm on a Nonius
KappaCCD diffractometer.
Crystal data. C60H67F3O2P4Pd2, M = 1213.82, monoclinic,
space group C2/c, a = 24.6810(3), b = 9.23800(10), c =
◦
3
˚
˚
25.2280(3) A, b = 108.8150(6) , V = 5444.70(11) A , T = 100(2)
K, Z = 4, l(Mo-Ka) = 0.831 mm−1, 57348 reflections measured,
7922 unique (Rint = 0.042). The structure was solved by direct
methods (SHELXTL PLUS) and refined with the full matrix
least squares methods on F2 (SHELX-97).45 Final R1, wR2 values
on all data: 0.0327, 0.0633. R1, wR2 values for 6861 reflections
with Io > 2r(Io): 0.0259, 0.0607. Hydrogen atoms were placed at
calculated positions and refined using a riding model except for
H(2A), which was refined isotropically. The symmetry generated
atoms are related to those in the asymmetric unit by the −x +
1, y, −z + 1/2 symmetry operation.
CCDC reference number 276221.
See http://dx.doi.org/10.1039/b509032f for crystallographic
data in CIF or other electronic format.
22 T. Braun and R. N. Perutz, Chem. Commun., 2002, 2749–2757; J.
Burdeniuc, B. Jedlicka and R. H. Crabtree, Chem. Ber./Recl., 1997,
130, 145–154; T. G. Richmond, Top. Organomet. Chem., 1999, 3, 243–
269; J. L. Kiplinger, T. G. Richmond and C. E. Osterberg, Chem. Rev.,
1994, 94, 373–431; W. D. Jones, Dalton Trans., 2003, 3991–3994.
23 For the oxidative addition of a C–F bond at Ni or Pt see: P.
Hofmann and G. Unfried, Chem. Ber., 1992, 125, 659–661; M. I.
Sladek, T. Braun, B. Neumann and H.-G. Stammler, J. Chem. Soc.,
Acknowledgements
We would like to acknowledge the Deutsche Forschungsgemein-
schaft (grant BR-2065/1-5) for financial support. We also like to
thank Ms A. Penner and Ms C. Koen for experimental assistance
and are grateful to Professor P. Jutzi for his generous support.
D a l t o n T r a n s . , 2 0 0 5 , 3 3 3 1 – 3 3 3 6
3 3 3 5