6770 Journal of Medicinal Chemistry, 2005, Vol. 48, No. 22
Letters
(4) Thiel, V.; Ivanov, K. A.; Putics, A.; Hertzig, T.; Schelle, B.; Bayer,
S.; Weissbrich, B.; Snijder, E. J.; Rabenau, H.; Doerr, H. W.;
Gorbalenya, A. E.; Ziebuhr, J. Mechanisms and enzymes in-
volved in SARS coronavirus genome expression. J. Gen. Virol.
2003, 84, 2305-2315.
(5) (a) Anand, K.; Ziebuhr, J.; Wadhwani, P.; Mesters, J. R.;
Hilgenfeld, R. Coronavirus main proteinase (3CL(pro)) struc-
ture: Basis for design of anti-SARS drugs. Science 2003, 300,
1763-1767. (b) Anand, K.; Palm, G. J.; Mesters, J. R.; Siddell,
S. G.; Ziebuhr, J.; Hilgenfeld, R. Structure of coronavirus main
proteinase reveals combination of a chymotrypsin fold with an
extra alpha-helical domain. EMBO J. 2002, 21, 3213-3224.
(6) Hegyi, A.; Ziebuhr, J. Conservation of substrate specificities
among coronavirus main proteases. J. Gen. Virol. 2002, 83, 595-
599.
(7) Matthews, D. A.; Dragovich, P. S.; Webber, S. E.; Fuhrman, S.
A.; Patick, A. K.; Zalman, L. S.; Hendrickson, T. F.; Love, R. A.;
Prins, T. J.; Marakovits, J. T.; Zhou, R.; Tikhe, J.; Ford, C. E.;
Meador, J. W.; Ferre, R. A.; Brown, E. L.; Binford, S. L.;
Brothers, M. A.; DeLisle, D. M.; Worland, S. T. Structure-
assisted design of mechanism-based irreversible inhibitors of
human rhinovirus 3C protease with potent antiviral activity
against multiple rhinovirus serotypes. Proc. Natl. Acad. Sci.
U.S.A. 1999, 96, 11000-11007.
(8) Matthews, D. A.; Patick, A. K.; Baker, R. O.; Brothers, M. A.;
Dragovich, P. S.; Hartmann, C. J.; Johnson, T. O.; Mucker, E.
M.; Reich, S. H.; Rejto, P. A. J.; Rose, P. W.; Zwiers, S. H.;
Huggins, J. W. In Vitro Antiviral Activity of Human Rhinovirus
3C Protease Inhibitors against the SARS Coronavirus; The
National Academies Press: Washington, DC, 2004; Chapter 4,
186.html).
(9) Ghosh, A. K.; Fidanze, S. Transition-state mimetics for HIV
protease inhibitors: Stereocontrolled synthesis of hydroxyeth-
ylene and hydroxyethylamine isosteres by ester-derived titanium
enolate syn and anti-aldol reactions. J. Org. Chem. 1998, 63,
6146-6154.
(10) Kokotos, G.; Padron, J. M.; Martin, T.; Gibbons, W. A.; Martin,
V. S. A general approach to the asymmetric synthesis of
unsaturated lipidic R-amino acids. The first synthesis of R-ami-
noarachidonic acid. J. Org. Chem. 1998, 63, 3741-3744.
(11) Hanessian, S.; Margarita, R. 1,3-Asymmetric induction in di-
anionic allylation reactions of amino acid derivatives. Synthesis
of functionally useful enantiopure glutamates, pipecolates, and
pyroglutamates. Tetrahedron Lett. 1998, 39, 5887-5890.
(12) Secrist, J. A., III; Logue, M. W. Amine hydrochlorides in the
reduction in the presence of chloroform. J. Org. Chem. 1972,
37, 335-336.
(13) Tian, Q.; Nayyar, N. K.; Babu, S.; Chen, L.; Tao, J.; Lee S.;
Tibbetts, A.; Moran, T.; Liou, J.; Guo, M.; Kennedy, T. P. An
efficient synthesis of a key intermediate for the preparation of
the rhinovirus protease inhibitor AG7088 via asymmetric dian-
ionic cyanomethylation of N-Boc-L-(+)-glutamic acid dimethyl
ester. Tetrahedron Lett. 2001, 42, 6807-609.
(14) Baraldi, P. G.; Simoni, D.; Moroder, F.; Manfredini, S.; Mucchi,
L.; Vecchia, F. D. Synthesis of 2-(5′-substituted isoxazol-3′-yl)-
4-oxo-3-thiazolidinyl alkanoic acids. J. Heterocycl. Chem. 1982,
19, 557-560.
µM, but observable toxicity was noted. Since inhibitor
4 with a P2-prenyl group is significantly more potent
than the P2-phenylmethyl containing inhibitor 3 in
vitro, it indicates that other side chain residues could
be accommodated by the S2-subsite of 3CLpro.
To gain molecular insight, we attempted to resolve
the inhibitor-bound crystal structure of SARS-3CLpro.
We successfully crystallized the nontagged SARS-
3CLpro apoenzyme in complex, i.e., covalently modified,
with inhibitor 4. The X-ray structure of SARS-3CLpro
inhibitor complex of 4 was determined to a resolution
of 1.89 Å.18 A stereoview of the inhibitor-bound structure
is shown in Figure 4. Analysis of this structure reveals
why 23 shows very little inhibitory activity of the
enzyme. It indicates that substitution of the carbonyl
oxygen atom with a hydroxyl group disrupts an impor-
tant hydrogen bond between the backbone amide nitro-
gen of Glu166 and the carbonyl oxygen of the inhibitor.
This SARS-3CLpro-bound inhibitor structure will pro-
vide molecular insight and facilitate design of more
effective inhibitors.
In conclusion, our preliminary investigation led to
identification of two peptidomimetic lead inhibitors for
SARS-3CLpro. These inhibitors are not only potent
against SARS-3CLpro but effective in SARS-CoV cell
culture assay. An inhibitor containing a hydroxyethyl-
ene isostere scaffold was not very effective. An X-ray
structure of 4-bound SARS-3CLpro revealed important
molecular insights into the molecular recognition of this
class of compounds by SARS-3CLpro. Further investi-
gations including detailed structure-activity relation-
ships and nonpeptidal inhibitor design from these
preliminary studies are currently underway.
Acknowledgment. This work was supported by the
National Institutes of Health (NIAID), Grant P01
AI060915. The work was also partially supported by
NIGMS (Grant GM 53386).
Supporting Information Available: Experimental meth-
ods for 3-23 and HPLC data for 3, 4, and 23. This material is
References
(15) Enzymatic activity of recombinant SARS-3CLpro was measured
via a FRET-based fluorescence assay using the peptide-substrate
E(EDANS)-S-A-T-L-Q-S-G-L-A-K(DABCYL)-S (SynPep, Inc.).
The reactions were monitored at 25 °C in 96-well microplates
containing 50 mM HEPES (pH 7.5) using a Varian Eclipse
spectrofluorimeter. For time course of inactivation studies, 50
µM 3CLpro was incubated with 500 µM of each compound. The
percent remaining activity as a function of time was plotted, and
the data were fit to a single-exponential decay to obtain kinact
and half-life T. Details of this assay will be published in due
course.
(16) Kim, J. C.; Spence, R. A.; Currier, P. F.; Lu, X.; Denison, M. R.
Coronavirus protein processing and RNA synthesis is inhibited
by the cysteine proteinase inhibitor E64d. Virology 1995, 208,
1-8.
(17) Baker, R. O.; Bray, M.; Higgins, J. W. Potential antiviral
therapeutics for smallpox, monkeypox and orthopoxvirus infec-
tions. Antiviral Res. 2003, 57, 13-20.
(18) The protein-ligand X-ray structure of 4-bound SARS-3 CLpro
has been deposited in PDB. RCSB code is RCSB034045 and PDB
code is 2ALV. SARS-3CLpro (40-40 mg/mL) was incubated with
a 2-fold molar excess of 4 for 3 h. The enzyme-inhibitor complex
was then crystallized at pH 7.5 using PEG 20,000. Crystals were
soaked in the mother liquor plus 15% (v/v) MPD and then flash-
frozen using a nitrogen-gas stream. Diffraction data on a single
crystal were recorded on an MAR 210 CCD detector at SER-
CAT beamline 22-ID. Data were integrated and scaled using
DENZO and SCALEPACK, resulting in an Rmerge of 3.8% for all
data from 50 to 1.9 Å. The 3CLpro-4 complex crystallized in
space group C121 with one molecule in the asymmetric unit with
(1) (a) Drosten, C.; Gunther, S.; Preiser, W.; van der Werf, S.; Brodt,
H. R.; Becker, S.; Rabenau, H.; Panning, M.; Kolesnikova, L.;
Fouchier, R. A.; Berger, A.; Burguiere, A. M.; Cinatl, J.; Eick-
mann, M.; Escriou, N.; Grywna, K.; Kramme, S.; Manuguerra,
J. C.; Muller, S.; Rickerts, V.; Sturmer, M.; Vieth, S.; Klenk, H.
D.; Osterhaus, A. D.; Schmitz, H.; Doerr, H. W. Identification of
a novel coronavirus in patients with severe acute respiratory
syndrome. N. Engl. J. Med. 2003, 348, 1967-1976. (b) Ksiazek,
T. G.; Erdman, D.; Goldsmith, C. S.; Zaki, S. R.; Peret, T.; Emery,
S.; Tong, S.; Urbani, C.; Comer, J. A.; Lim, W.; Rollin, P. E.;
Dowell, S. F.; Ling, A. E.; Humphrey, C. D.; Shieh, W. J.;
Guarner, J.; Paddock, C. D.; Rota, P.; Fields, B.; DeRisi, J.; Yang,
J. Y.; Cox, N.; Hughes, J. M.; LeDuc, J. W.; Bellini, W. J.;
Anderson, L. J. A novel coronavirus associated with severe acute
respiratory syndrome. N. Engl. J. Med. 2003, 348, 1953-1966.
(2) Peiris, J. S.; Lai, S. T.; Poon, L. L.; Guan, Y.; Yam, L. Y.; Lim,
W.; Nicholls, J.; Yee, W. K.; Yan, W. W.; Cheung, M. T.; Cheng,
V. C.; Chan, K. H.; Tsang, D. N.; Yung, R. W.; Ng, T. K.; Yuen,
K. Y. Coronavirus as a possible cause of severe acute respiratory
syndrome. Lancet 2003, 361, 1319-1325 and references therein.
(3) Rota, P. A.; Oberste, M. S.; Monroe, S. S.; Nix, W. A.; Campag-
noli, R.; Icenogle, J. P.; Penaranda, S.; Bankamp, B.; Maher,
K.; Chen, M. H.; Tong, S.; Tamin, A.; Lowe, L.; Frace, M.; DeRisi,
J. L.; Chen, Q.; Wang, D.; Erdman, D. D.; Peret, T. C.; Burns,
C.; Ksiazek, T. G.; Rollin, P. E.; Sanchez, A.; Liffick, S.; Holloway,
B.; Limor, J.; McCaustland, K.; Olsen-Rasmussen, M.; Fouchier,
R.; Gunther, S.; Osterhaus, A. D.; Drosten, C.; Pallansch, M.
A.; Anderson, L. J.; Bellini, W. J. Characterization of a novel
coronavirus associated with severe acute respiratory syndrome.
Science 2003, 300, 1394-1399.