Organic Letters
Letter
Notes
newly formed stereogenic center, we prepared 5-carboxyme-
thylcyclopentene carboxylate 11, a potential key intermediate
in the synthesis of a number of natural products including the
monoterpenes mitsugashiwalactone and dolichodial in three
steps and 57% yield starting from 9.32 Comparison of its
optical rotation with the one reported confirmed the R
The authors declare no competing financial interest.
An early preprint of this work appeared on ChemRxiv
(8091314).33
ACKNOWLEDGMENTS
configuration of the newly formed center {[α]24 +23.9
■
D
(c 0.48, CHCl3) (found), lit.32b [α]26D +30.7 (c 0.6, CHCl3)}.
In summary, we have developed a catalytic one-pot two-step
synthesis of diversely substituted α-branched acrylonitriles
featuring an enantioselective Michael addition/retro-Die-
ckmann/retro-Michael fragmentation cascade using 4-cyano-
3-oxotetrahydrothiophene (c-THT) as an acrylonitrile surro-
gate. Most importantly, the reaction is easy to set up, scalable,
and robust and offers a direct access to interesting chiral
building blocks, which can be readily functionalized. The
concept, through the latent acrylonitrile surrogate (c -THT)
and the retro-Dieckmann/retro-Michael fragmentation, vir-
tually connects the asymmetric Michael addition and the α-
alkylation of acrylonitrile, two reactivities which, at first glance,
appear to be irreconcilable. With this in mind and considering
the importance of the acrylonitrile motif in medicinal,
agrochemical, and polymer chemistry, we believe this method
will become an essential tool in the synthetic chemist’s toolbox.
The authors gratefully acknowledge Sanofi and Queen Mary
University of London for financial support and Prof. Cyril
Bressy (Aix-Marseille University) for fruitful discussions.
REFERENCES
■
(1) (a) Fleming, F. F.; Yao, L.; Ravikumar, P.; Funk, L.; Shook, B. C.
J. Med. Chem. 2010, 53, 7902−7917. (b) Van Boven, M.; Blaton, N.;
Cokelaere, M.; Daenens, P. J. Agric. Food Chem. 1993, 41, 1605−
1607. (c) Segura, J. L.; Martín, N.; Hanack, M. Eur. J. Org. Chem.
́
1999, 1999, 643−651. (d) Karp, E. M.; Eaton, T. R.; i Nogue, V. S.;
Vorotnikov, V.; Biddy, M. J.; Tan, E. C.; Brandner, D. G.; Cywar, R.
M.; Liu, R.; Manker, L. P.; Michener, W. E.; Gilhespy, M.; Skoufa, Z.;
Watson, M. J.; Fruchey, O. S.; Vardon, D. R.; Gill, R. T.; Bratis, A. D.;
Beckham, G. T. Science 2017, 358, 1307−1310.
(2) Pollak, P.; Romeder, G.; Hagedorn, F.; Gelbke, H.-P. In Ullman’s
Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim,
Germany, 2000.
(3) (a) Fleming, F. F.; Wang, Q. Chem. Rev. 2003, 103, 2035−2078.
(b) Allgauer, D. S.; Jangra, H.; Asahara, H.; Li, Z.; Chen, Q.; Zipse,
H.; Ofial, A. R.; Mayr, H. J. Am. Chem. Soc. 2017, 139, 13318−13329.
(4) (a) Mu, Y.; Nguyen, T. T.; Koh, M.; Schrock, R. R.; Hoveyda, A.
H. Nat. Chem. 2019, 11, 478−487. (b) Crowe, W. E.; Goldberg, D. R.
J. Am. Chem. Soc. 1995, 117, 5162−5163.
(5) Debuigne, A.; Warnant, J.; Jerome, R.; Voets, I.; de Keizer, A.;
Stuart, M. A. C.; Detrembleur, C. Macromolecules 2008, 41, 2353−
2360.
̈
ASSOCIATED CONTENT
* Supporting Information
■
sı
The Supporting Information is available free of charge at
́
̂
1
Details of experimental procedures, H and 13C NMR
spectra, HPLC chromatograms (PDF)
(6) Hamann, M. T.; Scheuer, P. J.; Kelly-Borges, M. J. Org. Chem.
1993, 58, 6565−6569.
(7) Berger, J.; Jampolsky, L. M.; Goldberg, M. W. Arch. Biochem.
1949, 22, 476−478.
AUTHOR INFORMATION
Corresponding Author
■
(8) Gao, D.-W.; Vinogradova, E. V.; Nimmagadda, S. K.; Medina, J.
M.; Xiao, Y.; Suciu, R. M.; Cravatt, B. F.; Engle, K. M. J. Am. Chem.
Soc. 2018, 140, 8069−8073.
Stellios Arseniyadis − Queen Mary University of London,
School of Biological and Chemical Sciences, London E1 4NS,
(9) Wang, X.; Studer, A. Angew. Chem., Int. Ed. 2018, 57, 11792−
11796.
(10) Ye, F.; Chen, J.; Ritter, T. J. Am. Chem. Soc. 2017, 139, 7184−
7187.
Authors
(11) (a) Hirata, Y.; Yukawa, T.; Kashihara, N.; Nakao, Y.; Hiyama,
T. J. Am. Chem. Soc. 2009, 131, 10964−10973. (b) Nakao, Y.; Yada,
A.; Ebata, S.; Hiyama, T. J. Am. Chem. Soc. 2007, 129, 2428−2429.
(12) (a) Dowd, P.; Kaufman, C.; Kaufman, P. J. Org. Chem. 1985,
50, 882−885. (b) Kissane, M.; Murphy, M.; Lynch, D.; Ford, A.;
Maguire, A. R. Tetrahedron 2008, 64, 7639−7649.
(13) (a) Shi, M.; Xu, Y. Angew. Chem., Int. Ed. 2002, 41, 4507−4510.
(b) Shi, M.; Xu, Y.; Shi, Y. Chem. - Eur. J. 2005, 11, 1794−1802.
(14) Hyodo, K.; Nakamura, S.; Shibata, N. Angew. Chem., Int. Ed.
2012, 51, 10337−10341.
Nicolas Duchemin − Queen Mary University of London, School
of Biological and Chemical Sciences, London E1 4NS, U.K.
Martin Cattoen − Queen Mary University of London, School of
Biological and Chemical Sciences, London E1 4NS, U.K.
Oscar Gayraud − Queen Mary University of London, School of
Biological and Chemical Sciences, London E1 4NS, U.K.
Silvia Anselmi − Queen Mary University of London, School of
Biological and Chemical Sciences, London E1 4NS, U.K.
Bilal Siddiq − Queen Mary University of London, School of
Biological and Chemical Sciences, London E1 4NS, U.K.
Roberto Buccafusca − Queen Mary University of London,
School of Biological and Chemical Sciences, London E1 4NS,
U.K.
(15) The lowest lethal concentration (LCLO) of acrylonitrile in
humans is 452 ppm over a period of 1 h. According to the United
States Environmental Protection Agency (EPA), acrylonitrile is
reasonably anticipated to be a human carcinogen.
(16) (a) Rauhut, M. M.; Currier, H. U.S. Patent 3074999, 1963;
Chem. Abstr. 1963, 58, 66109. For reviews on the Rauhut−Currier
reaction, see: (b) Aroyan, C. E.; Dermenci, A.; Miller, S. J.
Tetrahedron 2009, 65, 4069−4084. (c) Li, W.; Zhang, J. Chem. Soc.
Rev. 2016, 45, 1657−1677. (d) Ni, H.; Chan, W.-L.; Lu, Y. Chem. Rev.
2018, 118, 9344−9411. (e) Guo, H.; Fan, Y. C.; Sun, Z.; Wu, Y.;
Kwon, O. Chem. Rev. 2018, 118, 10049−10293.
(17) First example of an asymmetric Rauhut−Currier reaction, see:
Aroyan, C. E.; Miller, S. J. J. Am. Chem. Soc. 2007, 129, 256−257. For
selected examples of asymmetric Rauhut−Currier reactions, see:
Marc Daumas − Sanofi Chimie, Route d’Avignon, 30390
Aramon, France
Vincent Ferey − Sanofi R&D, 34080 Montpellier, France
́
Michael Smietana − Institut des Biomolecules Max Mousseron,
́
Universite de Montpellier, 34095 Montpellier, France;
Complete contact information is available at:
E
Org. Lett. XXXX, XXX, XXX−XXX