Study of a Key Reaction in the Planned Synthesis of Calyculin C
FULL PAPER
with brine (5 mL) and dried with MgSO4. The crude product was
purified by step gradient column chromatography (5%, 10%, 15%
and 20% EtOAc/hexane in 50 mL portions), affording 13 (12.3 mg,
86%) as a light yellow oil. Rf (50% EtOAc/Hex, UV/PMA) = 0.61.
[α]2D0 = –5.7 (c = 0.5; CHCl3). 1H NMR (400 MHz, CDCl3): δ =
0.94 (s, 3 H, CH3), 1.07 (d, J = 7.1 Hz, 3 H, CHCH3), 1.16 (s, 3
H, CH3), 1.64–1.72 (m, 1 H, CHaHbCH2OBn), 1.81–1.90 (m, 1 H,
[1]
[2]
For reviews of spiroketals see: a) F. Perron, K. F. Albizati,
Chem. Rev. 1989, 89, 1617–1661; b) M. F. Jacobs, W. Kitching,
Current Organic Chemistry 1998, 2, 395–436.
This is not always the case; e. g. pectenotoxin-1: T. Yasumoto,
M. Murata, Y. Oshima, M. Sano, G. K. Matsumoto, J. Clardy,
Tetrahedron 1985, 41, 1019–1025. and erythronolide A anhy-
dride: D. Schomburg, P. B. Hopkins, W. N. Lipscomb, E. J. Co-
rey, J. Org. Chem. 1980, 45, 1544–1546; endusamycin J. R. Os-
carson, J. Bordner, W. D. Celmer, W. P. Cullen, L. H. Huang,
H. Maeda, P. M. Moshier, S. Nishiyama, L. Presseau, R. Shi-
bakawa, J. Tone, J. Antibiot. 1989, 42, 37–48.
a) A. M. P. Koskinen, P. M. Pihko, Current Trends in Organic
Synthesis 1999, 291–298; b) P. M. Pihko, A. M. P. Koskinen,
Synlett 1999, 1966–1968; c) P. M. Pihko, A. M. P. Koskinen,
M. J. Nissinen, K. Rissanen, J. Org. Chem. 1999, 64, 652–654;
d) P. M. Pihko, A. M. P. Koskinen, J. Org. Chem. 1998, 63, 92–
98; e) A. M. P. Koskinen, P. M. Pihko, Tetrahedron Lett. 1994,
35, 7417–7420; f) A. M. P. Koskinen, J. Chen, Tetrahedron Lett.
1991, 32, 6977–6980; g) M. K. Lindvall, P. M. Pihko, A. M. P.
Koskinen, J. Biol. Chem. 1997, 272, 23312–23316; h) K. Karis-
almi, A. M. P. Koskinen, M. Nissinen, K. Rissanen, Tetrahe-
dron 2003, 59, 1421–1427; i) K. Karisalmi, A. M. P. Koskinen,
Synthesis 2004, 9, 1331–1342; j) V. Rauhala, M. Nevalainen,
A. M. P. Koskinen, Tetrahedron 2004, 60, 9199–9204.
CHaHbCH2OBn), 2.28–2.34 (m, 1 H, CHMe), 2.30 (d, JAB
=
14.9 Hz, 1 H, CH2OCHaHbPh), 2.56 (d, JAB = 14.9 Hz, 1 H,
CH2OCHaHbPh), 3.46–3.55 (m, 2 H, CH2OBn), 3.59 (dd, J = 8.7,
6.7 Hz, 1 H, CH(OBn)CHaHbO), 3.82 (dd, J = 8.7, 7.9 Hz, 1 H,
CH(OBn)CHaHbO), 4.10 (dd, J = 7.6, 6.7 Hz, 1 H, CHOBn), 4.22
[3]
(td, J = 9.8, 3.0 Hz, 1 H, CHCH2CH2OBn), 4.43 (dd, JAB
=
11.9 Hz, 1 H, CHOCHaHbPh), 4.44 (d, JAB = 11.8 Hz, 1 H,
CCHaHbC(O)CH), 4.47 (dd, JAB = 11.8 Hz, 2 H, CCHaHbC(O)
CH), 4.54 (d, JAB = 11.9 Hz, 1 H, CHOCHaHbPh), 7.28–7.37 (m,
10 H, ArH) ppm. 13C NMR (100 MHz, CDCl3): δ = 10.5, 17.2,
20.3, 31.7, 40.9, 47.6, 48.4, 67.0, 67.2, 69.3, 73.0, 73.1, 84.6, 110.1,
127.4, 127.7, 127.7, 128.4, 128.4, 138.2, 138.4, 209.9 ppm. IR (film):
ν
˜
= 1102, 1719 cm–1. HRMS (TOF MS EI+) calcd. for
max
C27H34O5Na 461.2304; found 461.2306.
(3R,5S,7S,8R,9R)-3-(Benzyloxy)-7-[2-(benzyloxy)ethyl]-4,4,8-tri-
methyl-1,6-dioxaspiro[4.5]decan-9-ol (14): The spiroketal 13 (6 mg,
13.7 µmol, 100 mol%) was dissolved in dry THF (0.1 mL) and co-
oled to –78 °C. -Selectride (41 µL, 41 µmol, 300 mol%) was added
dropwise, and the reaction mixture was allowed to stir for 1 h
23 min before quenching by addition of MeOH (0.2 mL), NaOH
(2.0 , 0.1 mL), H2O2 (30%, 0.1 mL) and THF (2 mL). The reac-
tion mixture was allowed to stir for 37 min at 0 °C and 38 min at
room temp., after which H2O (1 mL) and Et2O (3 mL) were added.
The phases were separated and the aqueous one was extracted five
times with Et2O (3 mL). The combined organic phases were ex-
tracted once with brine (5 mL) and dried with MgSO4. The crude
product was purified by step gradient column chromatography
(10 %, 20 %, 30 %, 40 % and 50 % EtOAc/hexane in 20 mL por-
tions), affording 14 (4.1 mg, 68%) as a colourless oil. Rf (50 %
[4]
[5]
Y. Kato, N. Fusetani, V. Matsunaga, V. Hashimoto, V. Fujita,
V. Furuya, J. Am. Chem. Soc. 1986, 108, 2780–2781.
a) J. Aiguade, J. Hao, C. J. Forsyth, Org. Lett. 2001, 3, 979–
982; b) C. J. Forsyth, J. Hao, J. Aiguade, Angew. Chem. Int. Ed.
2001, 40, 3663–3667; c) J. Hao, C. J. Forsyth, Tetrahedron Lett.
2002, 43, 1–2.
[6]
Previous synthetic approaches to calyculins: a) O. P. Anderson,
A. G. M. Barrett, J. J. Edmunds, S.-I. Hachiya, J. A. Hendrix,
K. Horita, J. W. Malecha, C. J. Parkinson, A. VanSickle, Can.
J. Chem. 2001, 79, 1562–1592; b) D. A. Evans, J. R. Gage, Tet-
rahedron Lett. 1990, 31, 6129–6132; c) D. A. Evans, J. R. Gage,
J. L. Leighton, J. Am. Chem. Soc. 1992, 114, 9434–9453; d)
A. G. M. Barrett, J. J. Edmunds, K. Horita, C. J. Parkinson, J.
Chem. Soc., Chem. Commun. 1992, 1236–1238; e) N. Tanimoto,
S. W. Gerritz, A. Sawabe, T. Noda, S. A. Filla, S. Masamune,
Angew. Chem. Int. Ed. Engl. 1994, 33, 673–675; f) F. Yokokawa,
Y. Hamada, T. Shioiri, Chem. Commun. 1996, 871–872; g) A. B.
Smith III, G. K. Friestad, J. Barbosa, E. Bertounesque, K. G.
Hull, M. Iwashima, Y. Qiu, B. A. Salvatore, P. G. Spoors, J. J.-
W. Duan, J. Am. Chem. Soc. 1999, 121, 10468–10477; h) A. B.
Smith III, M. Iwashima, Tetrahedron Lett. 1994, 35, 6051–
6052; i) A. B. Smith III, J. J. W. Duan, K. G. Hull, B. A. Salva-
tore, Tetrahedron Lett. 1991, 32, 4855–4858; j) G. R. Scarlato,
J. A. DeMattei, L. S. Chong, A. K. Ogawa, M. R. Lin, R. W.
Armstrong, J. Org. Chem. 1996, 61, 6139–6152; k) B. M. Trost,
J. A. Flygare, Tetrahedron Lett. 1994, 35, 4059–4062.
a) D. Seyferth, R. S. Marmor, P. Hilbert, J. Org. Chem. 1971,
36, 1379–1386; b) J. C. Gilbert, U. Weerisooriya, J. Org. Chem.
1982, 47, 1837–1845.
The absolute configuration is based on the accepted mnemonic
for the Sharpless AD. [H. C. Kolb, M. S. VanNieuwenzhe,
K. B. Sharpless, Chem. Rev. 1994, 94, 2483–2547.] This is fur-
ther corroborated by the conversion to the spiroketal and its
spectroscopic data.
EtOAc/Hex, UV/PMA) = 0.51. [α]2D0 = –9.8 (c = 0.31; CHCl3). H
1
NMR (400 MHz, CDCl3): δ = 0.82 (d, J = 7.2 Hz, 3 H, CHCH3),
0.93 (s, 3 H, CH3), 1.06 (s, 3 H, CH3), 1.61–1.67 (m, 3 H, CHMe,
CHaHbCH2OBn, CCHaHbCH(OH)CH), 1.72–1.79 (m, 2 H,
CHaHbCH2OBn, CCHaHbCH(OH)CH), 3.45–3.54 (m, 2 H,
CH2OBn), 3.60 (dd, J = 8.6, 6.5 Hz, 1 H, CH(OBn)CHaHbO), 3.65
(d, J = 9.7 Hz, 1 H, OH), 3.79 (qd, J = 9.7, 3.1 Hz, 1 H, CHOH),
3.86 (dd, J = 8.6, 7.8 Hz, 1 H, CH(OBn)CHaHbO), 4.05 (dd, J =
7.7, 6.5 Hz, 1 H, CHOBn), 4.22 (td, J = 9.9, 2.9 Hz, 1 H,
CHCH2CH2OBn), 4.43 (d, JAB = 11.8 Hz, 1 H, OCHaHbPh), 4.46
(d, JAB = 12.0 Hz, 1 H, OCHaHbPh), 4.50 (d, JAB = 12.0 Hz, 1 H,
OCHaHbPh), 4.54 (d, JAB = 11.8 Hz, 1 H, OCHaHbPh), 7.28–7.38
(m, 10 H, ArH) ppm. 13C NMR (100 MHz, CDCl3): δ = 10.6, 17.3,
20.4, 28.3, 29.7, 32.6, 37.9, 47.8, 63.4, 67.5, 69.5, 71.0, 73.0, 84.7,
[7]
[8]
109.5, 127.4, 127.6, 127.7, 128.4, 138.5, 138.5 ppm. IR (liq): ν
˜
max
= 1248, 3608 cm–1. HRMS (TOF MS EI+) calcd. for C27H36O5Na
463.2460; found 463.2469.
[9]
a) U. Widmer, Synthesis 1987, 6, 568–570; b) T. Iversen, D. R.
Bundle, J. Chem. Soc., Chem. Commun. 1981, 1240–1241; c)
H.-P. Wessel, T. Iversen, D. R. Bundle, J. Chem. Soc., Perkin
Trans. 1 1985, 2247–2251.
Acknowledgments
[10]
a) S. Ohira, Synth. Commun. 1989, 19, 561–564; b) M. Kita-
mura, M. Tokunaga, R. Noyori, J. Am. Chem. Soc. 1995, 117,
2931–2932; c) M. Regitz, J. Hocker, A. Liedhegener, Org.
Synth., Coll. Vol. V, pp. 179–183; d) P. Meffre, S. Hermann, P.
Durand, G. Reginato, A. Riu, Tetrahedron 2002, 58, 5159–
5162; e) W. J. Kerr, M. McLaughlin, A. J. Morrison, P. L. Pau-
Funding and financial support provided by the Finnish Academy,
the Ministry of Education, the Jenny and Antti Wihuri Foundation
and the Emil Aaltonen Foundation are gratefully acknowledged.
We would like to thank Dr. Jari Koivisto at Helsinki University of
Technology for assistance with NMR spectra.
Eur. J. Org. Chem. 2005, 4119–4126
© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
4125