Journal of the American Chemical Society
Article
M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359−
1469. (e) Chemler, S. R.; Fuller, P. H. Chem. Soc. Rev. 2007, 36, 1153−
1160. (f) Beletskaya, I. P.; Cheprakov, A. V. Coord. Chem. Rev. 2004,
248, 2337−2364. (g) Finet, J.-P.; Fedorov, A. Y.; Combes, S.; Boyer,
G. Curr. Org. Chem. 2002, 6, 597−626. (h) Sperotto, E.; van Klink, G.
P. M.; van Koten, G.; de Vries, J. G. Dalton Trans. 2010, 39, 10338−
10351. (i) Evano, G.; Blanchard, N.; Toumi, M. Chem. Rev. 2008, 108,
3054−3131.
associated component spectrum and relative concentration profile.
As each new reaction spectrum is acquired, ConcIRT LIVE reanalyzes
all the reaction spectra and updates the individual component spectra
and profiles. Thus, the calculation results evolve as the reaction
proceeds, and additional components such as intermediates are
detected. ConcIRT LIVE Component Spectra: The correspondence
between measured pure component spectra and the extracted spectra
calculated by ConcIRT LIVE is usually more than sufficient to identify
reaction species. Especially useful, ConcIRT LIVE frequently makes it
possible to determine when transient intermediates are present.
(10) (a) Shin, H. K.; Hampden-Smith, M. J.; Duesler, E. N.; Kodas,
T. T. Can. J. Chem. 1992, 70, 2954−2966. (b) Chen, T. Y.;
Vaissermann, J.; Ruiz, E.; Senateur, J. P.; Doppelt, P. Chem. Mater.
2001, 13, 3993−4004. (c) Shin, H. K.; Chi, K. M.; Farkas, J.;
Hampden-Smith, M. J.; Kodas, T. T.; Duesler, E. N. Inorg. Chem.
1992, 31, 424−431.
(11) Miller, J. T.; Kropf, A. J.; Zha, Y.; Regalbuto, J. R.; Delannoy, L.;
Louis, C.; Bus, E.; Van Bokhoven, J. A. J. Catal. 2006, 240, 222−234.
(12) (a) Whitesides, G. M.; Hackett, M.; Brainard, R. L.; Lavalleye, J.
P. P. M.; Sowinski, A. F.; Izumi, A. N.; Moore, S. S.; Brown, D. W.;
Staudt, E. M. Organometallics 1985, 4, 1819−1830. (b) Widegren, J.
A.; Bennett, M. A.; Finke, R. G. J. Am. Chem. Soc. 2003, 125, 10301−
10310.
(2) Paine, A. J. J. Am. Chem. Soc. 1987, 109, 1496−1502.
(3) (a) Weingarten, H. J. Org. Chem. 1964, 29, 3624−3626.
(b) Aalten, H. L.; Van Koten, G.; Grove, D. M.; Kuilman, T.; Piekstra,
O. G.; Hulshof, L. A.; Sheldon, R. A. Tetrahedron 1989, 45, 5565−
5578. (c) Jones, G. O.; Liu, P.; Houk, K. N.; Buchwald, S. L. J. Am.
Chem. Soc. 2010, 132, 6205−6213. (d) Strieter, E. R.; Bhayana, B.;
Buchwald, S. L. J. Am. Chem. Soc. 2009, 131, 78−88. (e) Strieter, E. R.;
Blackmond, D. G.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 4120−
4121. (f) Tye, J. W.; Weng, Z.; Giri, R.; Hartwig, J. F. Angew. Chem.,
Int. Ed. 2010, 49, 2185−2189. (g) Tye, J. W.; Weng, Z.; Johns, A. M.;
Incarvito, C. D.; Hartwig, J. F. J. Am. Chem. Soc. 2008, 130, 9971−
9983. (h) Cristau, H.-J.; Cellier, P. P.; Spindler, J.-F.; Taillefer, M.
Chem.Eur. J. 2004, 10, 5607−5622. (i) Franc, G.; Cacciuttolo, Q.;
Lefevre, G.; Adamo, C.; Ciofini, I.; Jutand, A. ChemCatChem 2011, 3,
305−309. (j) Franc, G.; Jutand, A. Dalton Trans. 2010, 39, 7873−
7875. (k) Mansour, M.; Giacovazzi, R.; Ouali, A.; Taillefer, M.; Jutand,
A. Chem. Commun. 2008, 6051−6053. (l) Ouali, A.; Spindler, J.-F.;
Jutand, A.; Taillefer, M. Adv. Synth. Catal. 2007, 349, 1906−1916.
(m) Yu, H.-Z.; Jiang, Y.-Y.; Fu, Y.; Liu, L. J. Am. Chem. Soc. 2010, 132,
18078−18091. (n) Zhang, S.; Ding, Y. Organometallics 2011, 30, 633−
641. (o) Zhang, S.-L.; Liu, L.; Fu, Y.; Guo, Q.-X. Organometallics 2007,
26, 4546−4554. (p) Savarin, C.; Srogl, J.; Liebeskind, L. S. Org. Lett.
2002, 4, 4309−4312. (q) Ma, D.; Zhang, Y.; Yao, J.; Wu, S.; Tao, F. J.
Am. Chem. Soc. 1998, 120, 12459−12467. (r) Allred, G. D.;
Liebeskind, L. S. J. Am. Chem. Soc. 1996, 118, 2748−2749. (s) Liu,
S.; Yu, Y.; Liebeskind, L. S. Org. Lett. 2007, 9, 1947−1950.
(t) Kaddouri, H.; Vicente, V.; Ouali, A.; Quazzani, F.; Taillefer, M.
Angew. Chem., Int. Ed. 2009, 48, 333−336. (u) Jerphagnon, T.; van
Link, G. P. M.; de Vries, J. G.; van Koten, G. Org. Lett. 2005, 7, 5241−
5244.
(4) (a) Hurtley, W. R. H. J. Chem. Soc. 1929, 1870−1873.
(b) Bruggink, A.; Ray, S. J.; McKillop, A. Org. Synth. 1978, 58, 52−
56. (c) Setsune, J.; Matsukawa, K.; Wakemoto, H.; Kitao, T. Chem.
Lett. 1981, 367−370. (d) Setsune, J.; Matsukawa, K.; Kitao, T.
Tetrahedron Lett. 1982, 23, 663−666. (e) Setsune, J.; Ueda, T.;
Shikata, K.; Matsukawa, K.; Iida, T.; Kitao, T. Tetrahedron 1986, 42,
2647−2656.
(5) (a) Hennessy, E. J.; Buchwald, S. L. Org. Lett. 2002, 4, 269−272.
(b) Chen, Y.; Wang, Y.; Sun, Z.; Ma, D. Org. Lett. 2008, 10, 625−628.
(c) Xie, X.; Cai, G.; Ma, D. Org. Lett. 2005, 7, 4693−4695. (d) Xie, X.;
Chen, Y.; Ma, D. J. Am. Chem. Soc. 2006, 128, 16050−16051. (e) Yip,
S. F.; Cheung, H. Y.; Zhou, Z.; Kwong, F. Y. Org. Lett. 2007, 9, 3469−
3472. (f) Jiang, Y.; Wu, N.; Wu, H.; He, M. Synlett 2005, 2731−2734.
(g) He, C.; Guo, S.; Huang, L.; Lei, A. J. Am. Chem. Soc. 2010, 132,
8273−8275.
(6) Huang, Z.; Hartwig, J. F. Angew. Chem., Int. Ed. 2012, 51, 1028−
1032.
(7) (a) Nelson, R. C.; Miller, J. T. Catal. Sci. Technol. 2012, 2, 461−
470. (b) Banares, M. A. Catal. Today 2005, 100, 71−77. (c) Ellis, P. J.;
̃
Fairlamb, I. J. S.; Hackett, S. F. J.; Wilson, K.; Lee, A. F. Angew. Chem.,
Int. Ed. 2010, 49, 1820−1824.
(8) Usually, β-diketone compounds were employed as ligands in
copper-catalyzed reactions,3i for which the nucleophilic substitution
might occur first to form the complex of copper and nucleophile.
(9) Relative concentration profiles are calculated by ConcIRT LIVE
for products, intermediates, and starting materials. ConcIRT LIVE is
especially valuable for trending chemical species that have overlapping
peaks. ConcIRT LIVE uses a type of mathematical algorithm known as
curve-resolution. Curve-resolution algorithms have the capability to
group wavenumber values that change absorbance intensity in the
same manner. For each group, ConcIRT LIVE calculates the
F
dx.doi.org/10.1021/ja310111p | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX