1122
B. Di Stasio et al. / European Journal of Medicinal Chemistry 40 (2005) 1111–1122
[10] M. Zhang, Z. Zhang, D. Blessington, H. Li, T.M. Busch, V. Madrak,
J. Miles, B. Chance, J.D. Glickson, G. Zheng, Bioconjug. Chem. 14
(2003) 709–714.
[11] in: J. Defaye, J. Gelas (Eds.), Studies in Natural Products Chemistry,
Elsevier, Amsterdam, 1991.
[12] M. Bergmann, L. Zervas, Ber. 65B (1932) 1201–1205.
[13] R.G. Little, J.Z. Anton, P.A. Loach, J. Heterocyclic Chem. 12 (1975)
343–349.
[14] H.W. Whitlock, R. Hanauer, M.Y. Oester, B.K. Bower, J. Am. Chem.
Soc. 91 (1969) 7485–7489.
[15] C.H. Lee, J.S. Lindsey, Tetrahedron 50 (1994) 11427–11440.
[16] C. Geoffroy, M.C. Carré, F. Baros, S. Muller, D. Dumas, J.F. Stoltz,
P. Van Hoppen, F.C. De Schryver, M.L. Viriot, in: Proceedings of the
Third Conference on Fluorescence Microscopy and Fluorescent
Probes, 1999, pp. 137–143.
3,3-dihexyloxacarbocyanine iodide (DiOC6). DiOC6 was pur-
chased from Molecular Probes, Leiden, The Netherlands.
Mitochondria were identified after staining the cells for 30 s
at 37 °C with 0.25 µmol l–1 Mitotracker Green® (Molecular
Probes). For lysosomes identification, HT29 cells were incu-
bated with 1 for 24 h, and overnight with 1 µg ml–1 Lucifer
yellow, LY® (Sigma-Aldrich, France). The cells were then
washed 3 times in a dye free media before imaging in RPMI.
The cells double stained with 1 and organelle probes were
examined with a confocal laser scanning microscope (Leica
TCS SP2-AOBS, Germany) equipped with an X63, numeri-
cal aperture 1.3 oil immersion objective (Leica).A pinhole of
60.85 µm was used and each image recorded contained 512 ×
512 pixels. An argon laser was used as excitation light at
458 nm for all organelle probes and a helium/neon laser at
633 nm for 1. Fluorescence of the organelles probes was
detected on channel 1 with a 505–545 nm band pass emis-
sion filter. Channel 2 was used to detect the red fluorescence
of 1 with 640–660 nm band pass emission filter. The fluores-
cence images were displayed in green and red “false” color
output and electronically combined to visualize dual local-
ization in yellow. Controls (cells stained only with 1 or
organelle probes) were conducted in parallel to optimize the
staining protocol and the detecting parameters of confocal
laser scanning microscopy.
[17] Y. Mikata,Y. Onchi, K. Tabata, S.I. Ogura, I. Okura, H. Ono, S.Yano,
Tetrahedron Lett. 39 (1998) 4505–4508.
[18] J.N. Demas, G.A. Crosby, J. Phys. Chem. 75 (1971) 991–1024.
[19] Y. Mikata, Y. Onchi, K. Shibata, T. Kakuchi, H. Ono, S.I. Ogura,
I. Okura, S. Yano, Bioorg. Med. Chem. Lett. 8 (1998) 3543–3548.
[20] D. Oulmi, P. Maillard, C. Vever-Bizet, M. Momenteau, D. Brault,
Photochem. Photobiol. 67 (1998) 511–518.
[21] E. Reddi, G. Jori, M.A.J. Rodgers, J.D. Spikes, Photochem. Photo-
biol. 38 (1983) 639–645.
[22] R. Boyle, D. Dolphin, Photochem. Photobiol. 64 (1996) 469–485.
[23] D. Kessel, P. Thompson, K. Saatio, D. Nantwi, Photochem. Photobiol.
45 (1987) 787–790.
[24] M. Barberi-Heyob, P.O. Vedrine, J.L. Merlin, R. Millon, J. Abecassis,
M.F. Poupon, F. Guillemin, Int. J. Oncol. 24 (2004) 951–958.
[25] I. Laville, T. Figueiredo, B. Loock, S. Pigaglio, P. Maillard, D.S. Gri-
erson, D. Carrez, A. Croisy, J. Blais, Bioorg. Med. Chem. 11 (2003)
1643–1652.
[26] L.Y. Xue, S.M. Chiu, N.L. Oleinick, Exp. Cell Res. 263 (2001)
145–155.
4.7. Statistical analysis
[27] C.M. Yow, J.Y. Chen, N.K. Mak, N.H. Cheung, A.W. Leung, Cancer
Lett. 157 (2000) 123–113.
[28] P. Morlière, J.C. Mazière, R. Santus, C.D. Smith, M.R. Prinsep,
C.C. Stobbe, M.C. Fenning, J.L. Golberg, J.D. Chapman, Cancer Res.
58 (1998) 3571–3578.
Mann and Whitney U-test was used to test for the signifi-
cant level between independent variables. The level of sig-
nificance was set to P < 0.05.
[29] J.Y. Matroule, G. Bonizzi, P. Morlière, N. Paillous, R. Santus,
V. Bours, J. Piette, J. Biol. Chem. 274 (1999) 2988–3000.
[30] C. Fabris, G. Valduga, G. Miotto, L. Borsetto, G. Jori, S. Garbisa,
E. Reddi, Cancer Res. 61 (2001) 7495–7500.
References
[31] M.H. Teiten, L. Bezdetnaya, P. Morlière, R. Santus, F. Guillemin, Br.
J. Cancer 88 (2003) 146–152.
[32] M. Terasaki, J. Song, J.R. Wong, M.J. Weiss, L.B. Chen, Cell 38
(1984) 101–108.
[33] A.S. Sobolev, D.A. Jans, A.A. Rosenkranz, Prog. Biophys. Mol. Biol.
73 (2000) 51–90.
[34] C.B. Hansen, G.J. Hoogers, W.J. Drenth, J. Mol. Catal. 79 (1993)
153–163.
[35] R. Schmidt, E. Afshari, J. Phys. Chem. 94 (1990) 4377–4378.
[36] C. Frochot, B. Di Stasio, M. Barberi-Heyob, M.C. Carré, J.M. Zwier,
F. Guillemin, M.L. Viriot, Oftalmologia 56 (2003) 62–66.
[37] T.C. Chou, P. Talalay, in: K.R. Harrap, T.A. Connors (Eds.), New
Avenues in Development Cancer Chemotherapy, Academic Press,
New York, 1987, pp. 37–64.
[1] J.G. Levy, M. Obochi, Photochem. Photobiol. 64 (1996) 737–739.
[2] T.J. Dougherty, Photochem. Photobiol. 45 (1987) 879–889.
[3] G. Poste, G.L. Nicolson, Biomembranes 11 (1983) 341–364.
[4] I. Rosenthal, Photochem. Photobiol. 53 (1991) 859–870.
[5] U. Isele, K. Schieweck, R. Kessler, P. van Hoogevest, H.G. Capraro, J.
Pharm. Sci. 84 (1995) 166–173.
[6] I.J. MacDonald, T. Dougherty, J. Porphyrins and Phthalocyanines 5
(2001) 105–129.
[7] J.G. Moser, F.P. Montforts, D. Kusch, A. Vervoorts, D. Kirsch,
M. Berghahn, N. Akgün, A. Rueck, S. Andrees, B. Wagner, Proc.
SPIE, Int. Soc. Opt. Eng. 2924 (1996) 22–30.
[8] G. Zheng, A. Graham, M. Shibata, J. Missert, A.R. Oseroff,
T.J. Dougherty, R.K. Pandey, J. Org. Chem. 66 (2001) 8709–8716.
[9] M. Momenteau, P. Maillard, M.A. de Bélinay, D. Carrez, A. Croisy, J.
Biomed. Opt. 4 (1999) 298–318.
[38] J.L. Merlin, H. Gautier, M. Barberi-Heyob, M.H. Teiten, F. Guillemin,
Int. J. Oncol. 22 (2003) 733–739.