Job/Unit: O31138
/KAP1
Date: 02-09-13 11:01:56
Pages: 6
Y. Tanimura, K. Yasunaga, K. Ishimaru
SHORT COMMUNICATION
Walji, D. W. C. MacMillan, Acc. Chem. Res. 2007, 40, 1327;
see also ref.[3a,3d, 3h–3j]
For selected reviews on urea and thiourea catalysts, see: a) S. J.
Connon, Chem. Eur. J. 2006, 12, 5419; b) S. J. Connon, Chem.
Commun. 2008, 2499; c) Z. Zhang, P. R. Schreiner, Chem. Soc.
Rev. 2009, 38, 1187; d) Y. Sohtome, K. Nagasawa, Chem. Com-
mun. 2012, 48, 7777; see also ref.[3a,3h,3l]
(0.125 mmol, 25 mol-%) in H2O (0.5 mL) was added cyclohexan-
one (5.0 mmol) and the aldehyde (0.5 mmol) at room temperature
under an atmosphere of air. The reaction mixture was stirred at
room temperature in a closed system for an appropriate time until
the reaction was complete, as monitored by TLC. Then, the mix-
ture was extracted with CH2Cl2 (3ϫ 2 mL), and the organic layer
was dried with anhydrous sodium sulfate, filtered, and concen-
trated. The residue was purified by flash column chromatography
on SiO2 (n-hexane/CH3CO2Et = 4:1) to afford the product.
[7]
[8]
[9]
For a selected review on guanidine catalysts, see: J. E. Taylor,
S. D. Bull, J. M. J. Williams, Chem. Soc. Rev. 2012, 41, 2109.
For selected reviews on asymmetric ion-pairing catalysis, see:
a) M. J. O’Donnell, Acc. Chem. Res. 2004, 37, 506; b) K. Ma-
ruoka, T. Ooi, T. Kano, Chem. Commun. 2007, 1487; c) T.
Hashimoto, K. Maruoka, Chem. Rev. 2007, 107, 5656; d) K.
Maruoka (Ed.), Asymmetric Phase Transfer Catalysis, Wiley-
VCH, Weinheim, Germany, 2008; e) S.-s. Jew, H.-g. Park,
Chem. Commun. 2009, 7090; f) R. J. Phipps, G. L. Hamilton,
F. D. Toste, Nature Chem. 2012, 4, 603; g) D. Enders, T. V.
Nguyen, Org. Biomol. Chem. 2012, 10, 5327; h) K. Brak, E. N.
Jacobsen, Angew. Chem. 2013, 125, 558; Angew. Chem. Int. Ed.
2013, 52, 534; i) M. Mahlau, B. List, Angew. Chem. 2013, 125,
540; Angew. Chem. Int. Ed. 2013, 52, 518; see also ref.[3a]
For reviews on carbene catalysts, see: a) D. Enders, T. Balensi-
efer, Acc. Chem. Res. 2004, 37, 534; b) D. Enders, O. Niemeier,
A. Henseler, Chem. Rev. 2007, 107, 5606; c) N. Marion, S. Díez-
González, S. P. Nolan, Angew. Chem. 2007, 119, 3046; Angew.
Chem. Int. Ed. 2007, 46, 2988; d) A. T. Biju, N. Kuhl, F. Glor-
ius, Acc. Chem. Res. 2011, 44, 1182; see also ref.[3a]
For recent reviews on Lewis base catalysts, see: a) Y. Orito, M.
Nakajima, Synthesis 2006, 1391; b) R. P. Wurz, Chem. Rev.
2007, 107, 5570; c) S. E. Denmark, G. L. Beutner, Angew.
Chem. 2008, 120, 1584; Angew. Chem. Int. Ed. 2008, 47, 1560;
d) P. Kocˇovský, S. Stoncˇius, in: Chiral Amine Synthesis (Ed.:
T. C. Nugent), Wiley-VCH, Weinheim, Germany, 2010, pp.
131–156; e) M. Freund, S. Schenker, A. Zamfir, S. B. Tsogoeva,
Curr. Org. Chem. 2011, 15, 2282; f) C. Lalli, J. Brioche, G.
Bernadat, G. Masson, Curr. Org. Chem. 2011, 15, 4108; g) A.
Weickgenannt, M. Oestreich, ChemCatChem 2011, 3, 1527; see
also ref.[3a]
General Procedure for the Asymmetric Cross-Aldol Reaction of
Cyclohexanone with Isatins: To a stirred solution of the catalyst
(0.125 mmol), H2O (0.1 mmol), and pTsOH·H2O (0.05 mmol) in
tBuOH (1.0 mL) was added cyclohexanone (10.0 mmol) and the
isatin (0.5 mmol) at room temperature under an atmosphere of air.
The reaction mixture was stirred at room temperature in a closed
system for an appropriate time until the reaction was complete, as
monitored by TLC. Then, the mixture was extracted with
CH3CO2Et (3ϫ 10 mL), and the organic layer was dried with anhy-
drous sodium sulfate, filtered, and concentrated. The residue was
purified by flash column chromatography on SiO2 (n-hexane/
CH3CO2Et = 1:4) to afford the product. The diastereomeric ratios
and the enantiomeric excess values of the products were determined
by HPLC on a chiral stationary phase.
[10]
[11]
Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures, characterization data including 1H
NMR and 13C NMR spectra of the catalysts and products, crystal
structure of 6b, and computational methods.
[1] a) A. Berkessel, H. Gröger (Eds.), Asymmetric Organocatalysis:
From Biomimetic Concepts to Applications in Asymmetric Syn-
thesis Wiley-VCH, Weinheim, Germany, 2005; b) P. I. Dalko
(Ed.), Enantioselective Organocatalysis: Reactions and Experi-
mental Procedures, Wiley-VCH, Weinheim, Germany, 2007; c)
B. List (Ed.), Asymmetric Organocatalysis, Springer, Berlin,
2009.
[12]
We also have reported chiral bisformamide organocatalysts,
see: a) K. Ishimaru, K. Ono, Y. Tanimura, T. Kojima, Synth.
Commun. 2011, 41, 3627; b) Y. Tanimura, K. Ishimaru, Tetra-
hedron: Asymmetry 2012, 23, 345.
[2] B. List, R. A. Lerner, C. F. Barbas III, J. Am. Chem. Soc. 2000,
122, 2395.
[3] For recent reviews concerning proline or proline-derived organ-
ocatalysts, see: a) P. I. Dalko, L. Moisan, Angew. Chem. 2004,
116, 5248; Angew. Chem. Int. Ed. 2004, 43, 5138; b) B. List,
Chem. Commun. 2006, 819; c) S. Mukherjee, J. W. Yang, S.
Hoffmann, B. List, Chem. Rev. 2007, 107, 5471; d) A. Erkkilä,
I. Majander, P. M. Pihko, Chem. Rev. 2007, 107, 5416; e) H.
Kotsuki, H. Ikishima, A. Okuyama, Heterocycles 2008, 75,
493; f) H. Kotsuki, H. Ikishima, A. Okuyama, Heterocycles
2008, 75, 757; g) M. Gruttadauria, F. Giacalone, R. Noto,
Chem. Soc. Rev. 2008, 37, 1666; h) A. Dondoni, A. Massi, An-
gew. Chem. 2008, 120, 4716; Angew. Chem. Int. Ed. 2008, 47,
4638; i) P. Melchiorre, M. Marigo, A. Carlone, G. Bartoli, An-
gew. Chem. 2008, 120, 6232; Angew. Chem. Int. Ed. 2008, 47,
6138; j) S. Bertelsen, K. A. Jørgensen, Chem. Soc. Rev. 2009,
38, 2178; k) D. Gryko, M. Chromin´ski, D. J. Pielacin´ska, Sym-
metry 2011, 3, 265; l) V. Bisai, A. Bisai, V. K. Singh, Tetrahe-
dron 2012, 68, 4541; m) H. Pellissier, Tetrahedron 2012, 68,
2197; n) P. Kumar, N. Dwivedi, Acc. Chem. Res. 2013, 46, 289;
see also ref.[1]
[4] For a selected review on designed amine organocatalysts, see:
T. Kano, K. Maruoka, Bull. Chem. Soc. Jpn. 2010, 83, 1421;
see also ref.[3h,3l,3m]
[5] For selected reviews on chiral phosphoric acids, see: a) T. Aki-
yama, Chem. Rev. 2007, 107, 5744; b) M. Terada, Chem. Com-
mun. 2008, 4097; c) M. Terada, Synthesis 2010, 1929; see also
ref.[3h]
[6] For reviews on imidazolidinone catalysts, see: a) E. Diez, S. V.
Ley, Chemtracts 2000, 13, 592; b) G. Lelais, D. W. C. MacMil-
lan, Aldrichimica Acta 2006, 39, 79; c) S. G. Ouellet, A. M.
[13]
[14]
R. Mahrwald (Ed.), Modern Aldol Reactions, Wiley-VCH,
Weinheim, Germany, 2004, vol. 1 and 2.
For reviews on asymmetric aldol reactions with the use of or-
ganocatalysts, see: a) W. Notz, F. Tanaka, C. F. Barbas III, Acc.
Chem. Res. 2004, 37, 580; b) H. Pellissier, Tetrahedron 2007,
63, 9267; c) G. Guillena, C. Nájera, D. J. Ramón, Tetrahedron:
Asymmetry 2007, 18, 2249; d) X.-H. Chen, J. Yu, L.-Z. Gong,
Chem. Commun. 2010, 46, 6437; e) M. Bhanushali, C.-G. Zhao,
Synthesis 2011, 1815; f) M. M. Heravi, S. Asadi, Tetrahedron:
Asymmetry 2012, 23, 1431; g) V. Bisai, A. Bisai, V. K. Singh,
Tetrahedron 2012, 68, 4541; see also ref.[3]
For reviews on primary amine catalysts, see: a) L.-W. Xu, Y.
Lu, Org. Biomol. Chem. 2008, 6, 2047; b) Y.-C. Chen, Synlett
2008, 1919; c) L.-W. Xu, J. Luo, Y. Lu, Chem. Commun. 2009,
1807; d) J. B. Brazier, N. C. O. Tomkinson, Top. Curr. Chem.
2010, 291, 281.
The single-crystal X-ray analysis of perfluorophenyl-N-prolin-
amide was reported, in which the stereoselectivity of the aldol
product was attributed to the enhanced NH acidity and confor-
mation of the perfluorophenyl ring; for details, see: J. N. Moor-
thy, S. Saha, Eur. J. Org. Chem. 2009, 739.
For N-arylprolinamide-catalyzed reactions, see: a) Z. Tang, F.
Jiang, X. Cui, L.-Z. Gong, A.-Q. Mi, Y.-Z. Jiang, Y.-D. Wu,
Proc. Natl. Acad. Sci. USA 2004, 101, 5755; b) Z. Tang, Z.-H.
Yang, X.-H. Chen, A.-Q. Cun, Y.-Z. Mi, Y.-Z. Jiang, L.-Z.
Gong, J. Am. Chem. Soc. 2005, 127, 9285; c) G. Guillena,
M. d. C. Hita, C. Nájera, Tetrahedron: Asymmetry 2006, 17,
729; d) G. Guillena, M. d. C. Hita, C. Nájera, Tetrahedron:
[15]
[16]
[17]
4
www.eurjoc.org
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 0000, 0–0