Published on Web 10/28/2005
Controlled Self-Assembly of Carbohydrate Conjugate
Rod-Coil Amphiphiles for Supramolecular Multivalent
Ligands
Byung-Sun Kim, Dong-Je Hong, Jinyoung Bae, and Myongsoo Lee*
Contribution from the Center for Supramolecular Nano-Assembly and Department of Chemistry,
Yonsei UniVersity, Seoul 120-749, Korea
Received August 31, 2005; E-mail: mslee@yonsei.ac.kr
Abstract: Carbohydrate conjugate rod-coil amphiphiles were synthesized and their self-assembling
behavior in aqueous solution was investigated. These amphiphiles were observed to self-assemble into
supramolecular structures that differ significantly depending on the molecular architecture. The rod-coil
amphiphiles based on a short coil (1) self-assemble into a vesicular structure, while the amphiphiles with
a long coil (2) show a spherical micellar structure. In contrast, 3, based on a twin-rod segment, was observed
to aggregate into cylindrical micelles with twice the diameter of molecular length scale. As a means to
determine the binding activity to protein receptors of these supramolecular objects, hemagglutination
inhibition assay was performed. The experiments showed that the supramolecular architecture has a
significant effect on the binding activity. In addition, incubation experiments with Escherichia coli showed
that mannose-coated objects specifically bind to the bacterial pili of the ORN 178 strain. These results
demonstrate that precise control of the nano-objects in shape and size by molecular design can provide
control of the biological activities of the supramolecular materials.
folding and the formation of biological membranes.6 Extensive
efforts thus have been directed toward bioactive supramolecular
Introduction
Novel approaches to the development of artificial multivalent
carbohydrate conjugate objects remain important area of research
due to their strong and specific interactions with the receptor
proteins.1 Many different designs of multivalent ligands have
been reported, with a number of scaffolds including glycopro-
teins,2 linear polymers,3 and dendrimers.4 Alternatively, self-
assembly of amphiphilic molecules containing carbohydrate
moieties is known to play a role in efficient multivalent ligands.5
The self-assembly of incompatible molecular components
leading to microphase separation comprises a powerful approach
toward the fabrication of complex nanoarchitectures and plays
an essential role in living systems, for example, in protein
systems for exploration of novel properties and functions that
are difficult without specific assembly of molecular compo-
nents.7 Block molecules that mimic lipid amphiphilicity have
been proved to be promising scaffolds for nanometer-sized
aggregates with well-defined size and shape.8 Introduction of a
rigid segment into a self-assembling system has been reported
to enhance aggregation stability.9 In addition to stability, another
important issue regarding the preparation of nanometer-scale
aggregates is their capability to interact with biological recep-
tors.10 To obtain precisely controlled and well-defined aggregates
with biological functions, however, the more elaborate design
of corresponding building blocks bearing bioactive moieties is
(1) (a) Lundquist, J. J.; Toone, E. J. Chem. ReV. 2002, 102, 555-578. (b)
Gestwicki, J. E.; Cario, C. W.; Strong, L. E.; Oetjen, K. A.; Kiessling, L.
L. J. Am. Chem. Soc. 2002, 124, 14922-14933. (c) Mammen, M.; Choi,
S.-K.; Whitesides, G. M. Angew. Chem., Int. Ed. 1998, 37, 2754-2794.
(2) Bertozzi, C. R.; Kiessling, L. L. Science 2001, 291, 2357-2364.
(3) (a) Disney, M. D.; Zheng, J.; Swager, T. M.; Seeberger, P. H. J. Am. Chem.
Soc. 2004, 126, 13343-13346. (b) Kim, I.-B.; Wilson, J. N.; Bunz, U. H.
F. Chem. Commun. 2005, 1273-1275. (c) Gestwicki, J. E.; Kiessling, L.
L. Nature 2002, 415, 81-84. (d) Sasaki, K.; Nishida, Y.; Tsurumi, T.;
Uzawa, H.; Kondo, H.; Kobayashi, K. Angew. Chem., Int. Ed. 2002, 41,
4463-4467. (e) Cario, C. W.; Gestwicki, J. E.; Kanai, M.; Kiessling, L.
L. J. Am. Chem. Soc. 2002, 124, 1615-1619.
(4) (a) Woller, E. K.; Walter, E. D.; Morgan, J. R.; Singel, D. J.; Cloninger,
M. J. J. Am. Chem. Soc. 2003, 125, 8820-8826. (b) Roy, R.; Kim, J. M.
Angew. Chem., Int. Ed. 1998, 38, 369-372. (c) Baussanne, I.; Law, H.;
Defaye, J.; Benito, J. M.; Mellet, C. O.; Fernandez, J. M. G. Chem.
Commun. 2000, 1489-1490.
(5) (a) Thoma, G.; Katopodis, A. G.; Voelcker, N.; Duthaler, R. O.; Streiff,
M. B. Angew. Chem., Int. Ed. 2002, 41, 3195-3198. (b) Aoyama, Y.;
Kanamori, T.; Nakai, T.; Sasaki, T.; Horiuchi, S.; Sando, S.; Niidome, T.
J. Am. Chem. Soc. 2003, 125, 3455-3457. (c) de la Fuente, J. M.;
Barrientos, A. G.; Rojas, T. C.; Rojo, J.; Can˜ada, J.; Ferna´ndez, A.; Penade´s,
S. Angew. Chem., Int. Ed. 2001, 40, 2258-2261. (d) Lin, C.-C.; Yeh, Y.-
C.; Yang, C.-Y.; Chen, C.-L.; Chen, G.-F.; Chen, C.-C.; Wu, Y.-C. J. Am.
Chem. Soc. 2002, 124, 3508-3509.
(6) (a) Wong, G. C. L.; Tang, J. X.; Lin, A.; Li, Y.; Janmey, P. A.; Safinya,
C. R. Science 2000, 288, 2035-2039. (b) Elemans, J. A. A. W.; Rowan,
A. E.; Nolte, R. J. M. J. Mater. Chem. 2003, 13, 2661-2670. (c) Hartgerink,
J. D.; Beniash, E.; Stupp, S. I. Science 2001, 294, 1684-1687.
(7) (a) Ooya, T.; Utsunomiya, H.; Eguchi, M.; Yui, N. Bioconjugate Chem.
2005, 16, 62-69. (b) Haag, R. Angew. Chem., Int. Ed. 2004, 43, 278-
282. (c) Savic, R.; Luo, L.; Eisenberg, A.; Maysinger, D. Science 2003,
300, 615-618. (d) Aggeli, A.; Bell, M.; Carrick, L. M.; Fichwick, C. W.
G.; Harding, R.; Mawer, P. J.; Radford, S. E.; Strong, A. E.; Boden, N. J.
Am. Chem. Soc. 2003, 125, 9619-9628.
(8) (a) Fo¨ster, S.; Konrad, M. J. Mater. Chem. 2003, 13, 2671-2688. (b) Lee,
M.; Cho, B.-K.; Zin, W.-C. Chem. ReV. 2001, 101, 3869-3892.
(9) (a) Yoo, Y.-S.; Choi, J.-H.; Song, J.-H.; Oh, N.-K.; Zin, W.-C.; Park, S.;
Chang, T.; Lee, M. J. Am. Chem. Soc. 2004, 126, 6294-6300. (b) Jang,
C.-J.; Ryu, J.-H.; Lee, J.-D.; Sohn, D.; Lee, M. Chem. Mater. 2004, 16,
4226-4231. (c) Vriezema, D. M.; Hoogboom, J.; Velonia, K.; Takazawa,
K.; Christianen, P. C. M.; Maan. J. C.; Rowan, A. E.; Nolte, R. J. M. Angew.
Chem., Int. Ed. 2003, 42, 772-776. (d) Kukula, H.; Schlaad, H.; Antoniett,
M.; Fo¨ster, S. J. Am. Chem. Soc. 2002, 124, 1658-1663. (e) Che´cot, F.;
Lecommandoux, S.; Gnanou, Y.; Klok, H.-A. Angew. Chem., Int. Ed. 2002,
41, 1340-1343.
(10) Kim, B.-S.; Yang, W.-Y.; Ryu, J.-H.; Yoo, Y.-S.; Lee, M. Chem. Commun.
2005, 2035-2037.
9
10.1021/ja055999a CCC: $30.25 © 2005 American Chemical Society
J. AM. CHEM. SOC. 2005, 127, 16333-16337
16333