Inorg. Chem. 2005, 44, 8188−8190
Group IV Complexes of a Tetradentate Amine Mono(phenolate) Ligand:
a Second Side-Arm Donor Stabilizes Cationic Species
Stanislav Groysman, Ekaterina Sergeeva, Israel Goldberg, and Moshe Kol*
School of Chemistry, Raymond and BeVerly Sackler Faculty of Exact Sciences,
Tel AViV UniVersity, Tel AViV 69978, Israel
Received August 17, 2005
An amine mono(phenolate) ligand bearing two side-arm donors
led to octahedral trialkoxo and trialkyl group IV metal complexes,
in which one of the donors was unbound, and to exceptionally
stable cationic complexes in which the two side-arm donors were
tightly bound.
Figure 1. Tetradentate amine phenolate ligand family.
Scheme 1. Synthesis of the Amine Mono(phenolate) Ligand
Precursor
Currently, there is considerable interest in early-transition-
metal complexes of the chelating tetradentate amine pheno-
late ligands.1-5 These ligands bind strongly to those oxophilic
metals, leading to well-defined geometries at the metal
centers and allowing a precise control of the complex
structure and activity. Thus far, this family included two
subclasses: the trianionic amine tris(phenolate) ligands1,2 and
the dianionic amine bis(phenolate) ligands,3-5 possessing an
additional “side-arm” donor. Conceptually, an additional
subclass of this family is feasible: the monoanionic amine
mono(phenolate) ligands that should possess two neutral side-
arm donors to be tetradentate (Figure 1). Among other mani-
festations, this second side-arm donor may stabilize cationic
MIV metal centers. To our knowledge, no early-transition-
metal complexes of such ligands have been previously
reported.6,7 Herein, we describe the synthesis and structure
of neutral and cationic group IV metal complexes of an amine
mono(phenolate) ligand bearing two side-arm donors. The
latter complexes exhibit remarkable stability.
Aiming at complexes of the LigMX3 and LigMX2+ types,
we chose a ligand featuring methoxy side-arm donors in view
of the strong binding of this donor4c and bulky tert-butyl-
phenolate substituents to minimize the formation of unwanted
products.4d The ligand precursor (LigH) was prepared by a
Mannich condensation between 2,4-di-tert-butylphenol, bis-
(2-methoxyethyl)amine, and formaldehyde (Scheme 1). This
method may lead to a broad range of amine mono(phenolate)
ligand precursors.
* To whom correspondence should be addressed. E-mail: moshekol@
post.tau.ac.il. Tel: +972 3 6407392. Fax: +972 3 6409293.
(1) (a) Kol, M.; Shamis, M.; Goldberg, I.; Goldschmidt, Z.; Alfi, S.; Hayut-
Salant, E. Inorg. Chem. Commun. 2001, 4, 177. (b) Groysman, S.;
Segal, S.; Shamis, M.; Goldberg, I.; Kol, M.; Goldschmidt, Z.; Hayut-
Salant, E. J. Chem. Soc., Dalton Trans. 2002, 3425. (c) Groysman,
S.; Goldberg, I.; Kol, M.; Goldschmidt, Z. Inorg. Chem. 2005, 44,
5073.
(2) (a) Bull, S. D.; Davidson, M. G.; Johnson, A. L.; Robinson, D. E. E.;
Mahon, M. F. Chem. Commun. 2003, 1750. (b) Ugrinova, V.; Ellis,
G. A.; Brown, S. N. Chem. Commun. 2004, 468. (c) Kim, Y.; Kapoor,
P. N.; Verkade, J. G. Inorg. Chem. 2002, 41, 4834. (d) Michalczyk,
L.; de Gala, S.; Bruno, J. W. Organometallics 2001, 20, 5547.
(3) Hinshaw, C. J.; Peng, G.; Singh, R.; Spence, J. T.; Enemark, J. H.;
Bruck, M.; Kristofzski, J.; Merbs, S. L.; Ortega, R. B.; Wexler, P. A.
Inorg. Chem. 1989, 28, 4483.
(4) (a) Tshuva, E. Y.; Goldberg, I.; Kol, M.; Weitman, H.; Goldschmidt,
Z. Chem. Commun. 2000, 379. (b) Tshuva, E. Y.; Goldberg, I.; Kol,
M.; Goldschmidt, Z. Organometallics 2001, 20, 3017. (c) Tshuva, E.
Y.; Groysman, S.; Goldberg, I.; Kol, M.; Goldschmidt, Z. Organo-
metallics 2002, 21, 662. (d) Tshuva, E. Y.; Goldberg, I.; Kol, M.;
Goldschmidt, Z. Inorg. Chem. 2001, 40, 4263. (e) Groysman, S.;
Goldberg, I.; Kol, M.; Genizi, E.; Goldschmidt, Z. Organometallics
2003, 22, 3013. (f) Groysman, S.; Goldberg, I.; Kol, M.; Genizi, E.;
Goldschmidt, Z. Organometallics 2004, 23, 1880.
(5) (a) Wolff, F.; Lorber, C.; Choukroun, R.; Donnadieu, B. Inorg. Chem.
2003, 42, 7839. (b) Cai, C.-X.; Amgoune, A.; Lehmann, C. W.;
Carpentier, J.-F. Chem. Commun. 2004, 330. (c) Alcazar-Roman, L.
M. B.; O’Keefe, J.; Hillmyer, M. A.; Tolman, W. B. Dalton Trans.
2003, 3082. (d) Lehtonen, A.; Sillanpa¨a¨, R. Inorg. Chem. 2004, 43,
6501. (e) Boyd, C. L.; Toupance, T.; Tyrrell, B. R.; Dubberley, S. T.;
Ward, B.; Wilson, C. R.; Cowley, A. R. Mountford, P. Organometallics
2005, 24, 309.
The group IV metal alkoxides, Ti(OiPr)4 and Zr(OtBu)4,
reacted with LigH at room temperature (RT) to give the
corresponding complexes LigTi(OiPr)3 (1) and LigZr(OtBu)3
(2) in high yields. Both complexes feature a single amine
phenolate ligand and three alkoxo groups, according to the
relative peak integration. The two OMe donors and the three
(6) A late-transition-metal (Cu) complex of a similar ligand has been
recently reported: Inoue, Y.; Matyjaszewski, K. Macromolecules 2004,
37, 4014.
(7) An amine mono(phenolate) ligand, carrying a triamino macrocycle
was reported. Lawrence, S. C.; Ward, B. W.; Dubberley, S. R.; Kozak,
C. M.; Mountford, P. Chem. Commun. 2003, 2880.
8188 Inorganic Chemistry, Vol. 44, No. 23, 2005
10.1021/ic051400w CCC: $30.25
© 2005 American Chemical Society
Published on Web 10/18/2005