Page 5 of 7
Green Chemistry
Please do not adjust margins
Green Chem.
COMMUNICATION
formic acid with a small amount of a mineral acid [38,39]. [8] T. Buntara, S. Noel, P.H. Phua, I. Melián‐Cabrera, J.G. de
Further investigation may be of interest to improve the yield
DOI: 10.1039/D0GC01454K
of ε-FOHA, and for formylation of ω-hydroxy acids in organic [9]. B. Xiao, M. Zheng, X. Li, J. Pang, R. Sun, H. Wang, X. Pang,
synthesis and catalysis.
A. Wang, X. Wang and T. Zhang, Green Chem., 2016, 18,
2175-2184.
Application of zeolites in industrial processes is well
established in mature technologies such as fluid catalytic [10] D.R. Vardon, N.A. Rorrer, D. Salvachúa, A.E. Settle, C.W.
cracking, hydrocracking or alkylation of aromatics [34], while
acidic ion exchange resin has been widely exploited in various
types of reactions such as esterification, hydrolysis,
Johnson, M.J. Menart, N.S. Cleveland, P.N. Ciesielski, K.X.
Steirer, J.R. Dorgan and G.T. Beckham, Green Chem., 2016,
18, 3397-3413.
condensation, dehydration, carbonylation, hydrogenation, and [11] M. Sayed, S.H. Pyo, N. Rehnberg and R., Hatti-Kaul, ACS
also catalytic dehydration of fructose to HMF and levulinic Sustain. Chem. Eng., 2019, 7, 4406-4413.
acid [7,11,36]. Furthermore, the solvent, DMF was also a [12] X. Tang, J. Wei, N. Ding, Y. Sun, X. Zeng, L. Hu, S. Liu, T. Lei
crucial factor in the dehydration and cyclization of 6-HHA; and Lin, L., Renew. Sustain. Energy Rev., 2017, 77, 287-296.
other solvents like DMSO and toluene resulted in only low [13] S.M. McKenna, S. Leimkühler, S. Herter, N.J. Turner and
A.J. Carnell, Green Chem., 2015, 17, 3271-3275.
yield (below 5%, data not shown) of ε-caprolactone under the
[14] B. Agarwal, K. Kailasam, R.S. Sangwan, and S. Elumalai,
Renew. Sustain. Energy Rev., 2018, 82, 2408-2425.
[15] J. Mormul, J. Breitenfeld, O. Trapp, R. Paciello, T. Schaub
and P. Hofmann, ACS Catal., 2016, 6, 2802-2810.
[16] M. Labet and W. Thielemans, Chem. Soc. Rev., 2009, 38,
3484-3504.
same conditions. Further investigations for each step are
required to find optimal processes.
Conclusions
We have demonstrated a new facile process to produce
industrially important 6-carbon chemicals such as 6-HHA, AA
and ε-CL from renewable resources, and which can be further
valorized to caprolactam and 1,6-HMD, and their polymers.
The biobased synthetic route, highly selective and controlled
oxidation of diol to ω-hydroxy acid or dicarboxylic acid, and
catalytic cyclization of ω-hydroxy acid can be a valuable model
for an environmentally friendly synthetic process for
chemicals and polymers by integrating biotechnology and
chemical synthesis.
[17] J. Tuteja, H. Choudhary, S. Nishimura, and K. Ebitani,
ChemSusChem, 2014, 7, 96-100.
[18] J. He, S.P. Burt, M. Ball, D. Zhao, I. Hermans, J.A. Dumesic,
G.W. Huber, 2018. ACS Catalysis, 2018, 8, 1427-1439.
[19] M.J. Gilkey, A.V. Mironenko, D.G. Vlachos and B. Xu, ACS
Catal., 2017, 7, 6619-6634.
[20] N.S. Kruyer, P. Peralta-Yahya, Curr. Opin. Biotechnol.,
2017, 45, 136-143
[21] E. Skoog, J.H. Shin, V. Saez-Jimenez, V. Mapelli, L. Olsson,
Biotechnol. Adv., 2018, 36, 2248-2263
[22] K. Weissermel and H. -J. Arpe, Industrial Organic
Chemistry, 4th ed., Wiley-VCH, Weinheim, 2003.
[23] S. Schmidt, C. Scherkus, J. Muschiol, U. Menyes, T.
Winkler, W. Hummel, H. Gröger, A. Liese, H.G. Herz and
U.T. Bornscheuer, Angew. Chem., 2015, 54, 2784-2787.
[24] S. Kara, D. Spickermann, J.H. Schrittwieser, A.
Weckbecker, C. Leggewie, I.W. Arends, F. Hollmann, ACS
Catalysis, 2013, 3, 2436-2439.
[25] A. Bornadel, R. Hatti‐Kaul, F. Hollmann and S. Kara,
ChemCatChem, 2015, 7, 2442-2445.
[26] J. Tuteja, S. Nishimura, H. Choudhary and K. Ebitani,
ChemSusChem, 2015, 8, 1862-1866.
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
This work was performed within the research program,
Sustainable Plastics and Transition Pathways (STEPS) at Lund
University supported by the Swedish Foundation for Strategic
Environmental Research (Mistra) (grant no. 2016/1489), and
was also supported by the Swedish Research Council VR (grant
no. 2013-6017).
[27] R. H. Fischer, R. Pinkos, F. Stein, Method for producing
1,6-hexanediol and 6-hydroxycaproic acid or their esters,
US Patent 6426438 B1, 2002.
[28] Y. Usui and Sato, K., Green Chem., 2003, 5, 373-375.
[29] V.S. Srinivasamurthy, D. Böttcher and U.T. Bornscheuer, Z.
Naturforsch. C, 2019, 74, 71-76.
[30] M.S. Ide and R.J. Davis, J. Catal., 2013, 308, 50-59.
[31] M. Sayed, T. Dishisha, W.F. Sayed, W.M. Salem, H.M.
Temerk and S.H. Pyo, Process Biochem., 2017, 63, 1-7.
[32] M. Faber, Process for producing adipic acid from biomass.
U.S. Patent 4,400,468, 1983.
[33] H. Kuno, M. Shibagaki, K. Takahashi, I. Honda and H.
Matsushita, Chem. Lett., 1992, 21, 571-574.
[34] C. Martínez and A. Corma, Coord. Chem. Rev., 2011, 255,
1558-1580.
Notes and references
[1] R. Hatti-Kaul, L.J. Nilsson, B. Zhang, N. Rehnberg, and S.
Lundmark, Trends Botechnol., 2020, 38, 50-67.
[2] Y. Zhu, C. Romain, and C.K. Williams, Nature, 2016, 540,
354-362.
[3] T. Iwata, Angew. Chem., 2015. 54, 3210-3215.
[4] A.K. Mohanty, S. Vivekanandhan, J.M. Pin and M. Misra,
Science, 2018, 362, 536-542.
[5] A.J. Straathof, S.A. Wahl, K.R. Benjamin, R. Takors, N.
Wierckx, and H.J. Noorman, Trends Biotechnol., 2019, 37,
1042-1050.
[6] K.M. Iris, and , D.C., Tsang, Bioresource technology, 2017,
238, 716-732.
[35] G. Gelbard, Ind. Eng. Chem. Res., 2005, 44, 8468-8498.
[36] V.M. Bhandari, L.G. Sorokhaibam and V.V. Ranade,
Industrial Catalytic Processes for Fine and Specialty
Chemicals, 2016, 393-426, Elsevier.
[7] S.H. Pyo, M. Sayed and R. Hatti-Kaul, Org. Process Res.
Dev., 2019, 23, 952-960.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins