36665 collected, final R [I . 2s] 5 0.0838, final Rw [I . 2s] 5 0.1504.
X-Ray crystal data for complex 3a, C45H58CeFe2N17O21: M 5 1424.90,
oxidant, the use of m-CPBA led to a slower reaction and a lower
yield of chlorosalicylate complex compared to the reaction between
1/m-ClC6H4COOH and H2O2 (16% yield vs. 74%). Therefore the
rearrangement of the 1–m-CPBA adduct is much less efficient than
the reaction between 1/m-ClC6H4COOH and H2O2, indicating
that the formation of a peroxybenzoate is not essential for the
hydroxylation. The importance of H2O2, consistent with our
preliminary kinetic results (Table S1{), can be explained by the
involvement of an iron–hydroperoxo intermediate. This inter-
mediate can either directly attack the coordinated aromatic ring, or
undergo subsequent O–O bond cleavage to generate a high-valent
iron–oxo oxidant. 18O-labeling experiments showed that the
oxygen incorporated in the salicylate product originates from
H2O2 and that the oxidant responsible for aromatic hydroxylation
does not exchange oxygen with water before the C–O bond is
formed (Fig. S10–12{). This is consistent with a hydroperoxo
intermediate, but does not rule out high-valent iron–oxo species
that may undergo slow isotope exchange with water. Lastly,
experiments with the deuterated substrate, d5-PhCOOH, showed
no significant H/D kinetic isotope effect on either step of the
reaction.{ Competition experiments using ESI-MS also showed no
preference of 1 in reacting with either protio or deuterio
isotopomers (Fig. S13{), so C–H bond breaking on the phenyl
ring is not a rate limiting step in this transformation.
¯
˚
triclinic, space group P1, a 5 11.741(2), b 512.072(2), c 5 21.838(4) A,
3
˚
a 5 83.52(3), b 5 82.33(3), c 5 74.75(3)u, V 5 2949.8(10) A , T 5 294 K,
Z 5 2, m 5 1.332 mm21, Rint 5 0.0218 for 8946 independent reflections of
the 9218 collected, final R [I . 2s] 5 0.0385, final Rw [I . 2s] 5 0.0807.
crystallographic data in CIF or other electronic format.
1 T. Flatmark and R. C. Stevens, Chem. Rev., 1999, 99, 2137–2160.
2 P. F. Fitzpatrick, Biochemistry, 2003, 42, 14083–14091.
3 A. Fishman, Y. Tao, L. Y. Rui and T. K. Wood, J. Biol. Chem., 2005,
280, 506–514.
4 M. H. Sazinsky, J. Bard, A. Di Donato and S. J. Lippard, J. Biol.
Chem., 2004, 279, 30600–30610.
5 K. H. Mitchell, C. E. Rogge, T. Gierahn and B. G. Fox, Proc. Natl.
Acad. Sci. USA, 2003, 100, 3784–3789.
6 C. Walling and R. A. Johnson, J. Am. Chem. Soc., 1975, 97, 363–367.
7 T. Kurata, Y. Watanabe, M. Katoh and Y. Sawaki, J. Am. Chem. Soc.,
1988, 110, 7472–7478.
8 D. T. Sawyer, A. Sobkowiak and T. Matsushita, Acc. Chem. Res., 1996,
29, 409–416.
9 S. Udenfriend, C. T. Clark, J. Axelrod and B. B. Brodie, J. Biol. Chem.,
1954, 208, 731–739.
10 J. P. Hage and D. T. Sawyer, J. Am. Chem. Soc., 1995, 117, 5617–5621.
11 (a) T. Tezuka, N. Narita, W. Ando and S. Oae, J. Am. Chem. Soc.,
1981, 103, 3045–3049; (b) G. W. Klein, K. Bhatia, V. Madhavan and
R. H. Schuler, J. Phys. Chem., 1975, 79, 1767–1774.
12 D. Mathieu, J. F. Bartoli, P. Battioni and D. Mansuy, Tetrahedron,
2004, 60, 3855–3862.
13 V. Balland, D. Mathieu, N. Pons-Y-Moll, J. F. Bartoli, F. Banse,
P. Battioni, J. J. Girerd and D. Mansuy, J. Mol. Catal. A: Chem., 2004,
215, 81–87.
14 J. F. Bartoli, F. Lambert, I. Morgenstern-Badarau, P. Battioni and
D. Mansuy, C. R. Chim., 2002, 5, 263–266.
15 D. Bianchi, M. Bertoli, R. Tassinari, M. Ricci and R. Vignola, J. Mol.
Catal. A: Chem., 2003, 204, 419–424.
16 G. A. Hamilton, J. W. Hanifin and J. P. Friedman, J. Am. Chem. Soc.,
1966, 88, 5269–5272.
17 S. J. Lange, H. Miyake and L. Que, Jr., J. Am. Chem. Soc., 1999, 121,
6330–6331.
18 M. P. Jensen, S. J. Lange, M. P. Mehn, E. L. Que and L. Que, Jr., J. Am.
Chem. Soc., 2003, 125, 2113–2128.
19 Y. Mekmouche, S. Me´nage, J. Pe´caut, C. Lebrun, L. Reilly,
V. Schuenemann, A. Trautwein and M. Fontecave, Eur. J. Inorg.
Chem., 2004, 3163–3171.
20 S. Me´nage, J. B. Galey, J. Dumats, G. Hussler, M. Seite´, I. G. Luneau,
G. Chottard and M. Fontecave, J. Am. Chem. Soc., 1998, 120,
13370–13382.
21 H. Furutachi, M. Murayama, A. Shiohara, S. Yamazaki, S. Fujinami,
A. Uehara, M. Suzuki, S. Ogo, Y. Watanabe and Y. Maeda, Chem.
Commun., 2003, 1900–1901.
22 F. Avenier, L. Dubois and J. M. Latour, New J. Chem., 2004, 28,
782–784.
23 N. Kitajima, M. Ito, H. Fukui and Y. Morooka, J. Am. Chem. Soc.,
1993, 115, 9335–9336.
24 K. Chen and L. Que, Jr., Chem. Commun., 1999, 1375–1376.
25 M. Costas, K. Chen and L. Que, Jr., Coord. Chem. Rev., 2000, 200,
517–544.
26 M. Costas, A. K. Tipton, K. Chen, D. H. Jo and L. Que, Jr., J. Am.
Chem. Soc., 2001, 123, 6722–6723.
27 M. C. White, A. G. Doyle and E. N. Jacobsen, J. Am. Chem. Soc., 2001,
123, 7194–7195.
28 J. Y. Ryu, J. Kim, M. Costas, K. Chen, W. Nam and L. Que, Jr., Chem.
Commun., 2002, 1288–1289.
29 S. Taktak, S. V. Kryatov and E. V. Rybak-Akimova, Inorg. Chem.,
2004, 43, 7196–7209.
Based on combined experimental results, a pathway for
aromatic hydroxylation by 1/H2O2 can be proposed (Scheme 2).
PhCOOH binds to 1 and/or the product of its subsequent one-
electron oxidation. When H2O2 is added, both kinetic and EPR
studies suggest the formation of a mononuclear Fe(III) complex
(most likely, a mixture of low-spin species 1a and high-spin species
1b). This intermediate can further react with H2O2 to form a short
lived mononuclear hydroperoxo species, as previously proposed
for BPMEN and related systems.24,31,32 Such species could then
attack the aromatic ring directly or produce high-valent iron–oxo
intermediates. The high selectivity observed argues against the
participation of hydroxyl radicals.11 In our hands, ring closed
species like 3 or 3a did not undergo oxidation with H2O2. These
results, however, do not exclude possible involvement of a
dinuclear ‘‘open-core’’ hydroperoxo intermediate, which will be
explored in future studies.
In conclusion, mononuclear iron(II) complex 1 efficiently and
selectively hydroxylates benzoic acids to their corresponding
salicylic acids under mild conditions. The oxygen source is
hydrogen peroxide, which generates water as the only by-product
of the oxidation reaction.
The authors thank Dr Richard J. Staples (Harvard U.), Prof.
Evgenii P. Talsi (Russian Academy of Science) and Dr Jacob
D. Soper (MIT). This work was supported by the National Science
Foundation (CHE 0111202 to ERA, CHE 9723772 for the NMR
facility at Tufts University, MRI 0320783 for the ESI-MS, CHE
9816557 for the EPR), the Department of Energy (#DE-FG02-03-
ER15455 to LQ), and Tufts Summer Scholars program (to MF).
30 E. A. Duban, K. P. Bryliakov and E. P. Talsi, Mendeleev Commun.,
2005, 12–14.
Notes and references
31 K. Chen, M. Costas, J. H. Kim, A. K. Tipton and L. Que, Jr., J. Am.
Chem. Soc., 2002, 124, 3026–3035.
32 D. Quin˜onero, K. Morokuma, D. G. Musaev, R. Mas-Ballest´e and
L. Que, Jr., J. Am. Chem. Soc., 2005, 127, 6548–6549.
{ X-Ray crystal data for complex 2, C46H58Cl2Fe2N8O17: M 5 1177.60,
monoclinic, space group P21/c, a 5 15.874(5), b 5 11.407(4), c 5
3
˚
˚
29.333(10) A, b 5 101.599(7)u, V 5 5203(3) A , T 5 193(2) K, Z 5 4,
m 5 0.739 mm21, Rint 5 0.0955 for 12857 independent reflections of the
This journal is ß The Royal Society of Chemistry 2005
Chem. Commun., 2005, 5301–5303 | 5303