Page 9 of 11
Journal of the American Chemical Society
Jeong, K. S.; Go, Y. B.; Shin, S.; Lee, S. M.; Kim, J.; Yaghi, O. M.;
Jeong, N. Asymmetric Catalytic Reactions by NbO-Type Chiral
Metal-Organic Frameworks. Chem. Sci. 2011, 2, 877.
work thus provides a new strategy to induce and tailor
1
2
3
4
5
6
7
8
stereoselectivity of organocatalyts and promises to develop a
variety of 2D functional materials for enantioselective
processes.
(8) (a) Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim,
K. A Homochiral Metal-Organic Porous Material for Enantioselective
Separation and Catalysis. Nature 2000, 404, 982. (b) Han, Q.; Qi, B.;
Ren, W.; He, C.; Niu, J.; Duan, C. Polyoxometalate-Based Homochiral
Metal-Organic Frameworks for Tandem Asymmetric Transformation of
Cyclic Carbonates from Olefins. Nat. Commun. 2015, 6, 10007.(c) Liu,
Gedrich, K.; Heitbaum, M.; Notzon, A.; Senkovska, I.; Froöhlich, R.;
Getzschmann, J.; Mueller, U.; Glorius, F.; Kaskel, S. A Family of Chiral
Metal-Organic Frameworks. Chem. -Eur. J. 2011, 17, 2099. (e) Tanaka,
K.; Sakuragi, K.; Ozaki, H.; Takada, Y. Highly Enantioselective
ASSOCIATED CONTENT
Supporting Information.
Experimental procedures, characterization data and DFT
calculations. This material is available free of charge via the
9
AUTHOR INFORMATION
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Corresponding Author
Friedel-Crafts
Trans-ß-nitrostyrene
Alkylation
of
N,
N-dialkylanilines
with
Catalyzed
by
a
Homochiral
Metal-OrganicFramework. Chem. Commun. 2018, 54, 6328. (f) Zhang,
Z. X.; Ji, Y. R.; Wojtas, L.; Gao, W. Y.; Ma, S. Q.; Zaworotko, M. J.;
Antilla, J. C. Two Homochiral Organocatalytic Metal Organic Materials
with Nanoscopic Channels. Chem. Commun. 2013, 49, 7693.
(9) (a) Zheng, M.; Liu, Y.; Wang, C.; Liu, S.; Lin, W. Cavity-Induced
Enantioselectivity Reversal in a Chiral Metal–Organic Framework
Brønsted Acid Catalyst. Chem. Sci. 2012, 3, 2623. (b) Falkowski, J. M.;
Sawano, T.; Zhang, T.; Tsun, G.; Chen, Y.; Lockard, J. V.; Lin W.
Privileged Phosphine-Based Metal–Organic Frameworks for
Broad-Scope Asymmetric Catalysis. J. Am. Chem. Soc. 2014, 136, 5213.
(c) Wu, C. D.; Hu, A.; Zhang, L.; Lin, W. A Homochiral Porous
Metal-Organic Framework for Highly Enantioselective Heterogeneous
Asymmetric Catalysis. J. Am. Chem. Soc. 2005, 127, 8940.
(10) (a) Mo, K.; Yang, Y.; Cui, Y. A Homochiral Metal-Organic
Framework as an Effective Asymmetric Catalyst for Cyanohydrin
Synthesis. J. Am. Chem. Soc. 2014, 136, 1746. (b) Chen, X.; Jiang, H.;
Hou, B.; Gong, W.; Liu, Y.; Cui. Y. Boosting Chemical Stability,
Catalytic Activity, and Enantioselectivity of Metal−Organic
Frameworks for Batch and Flow Reactions. J. Am. Chem. Soc. 2017,
139, 13476. (c) Chen, X.; Peng, Y.; Han, X.; Liu, Y.; Lin, X.; Cui, Y.
Sixteen Isostructural Phosphonate Metal-Organic Frameworks with
Controlled Lewis Acidity and Chemical Stability for Asymmetric
Catalysis. Nat. Commun. 2017, 8, 2171. (d) Peng, Y.; Gong, T.; Zhang,
K.; Lin, X.; Liu, Y.; Jiang, J.; Cui, Y. Engineering Chiral Porous
Metal-Organic Frameworks for Enantioselective Adsorption and
Separation. Nat. Commun. 2014, 5, 4406.
(11) (a) Cho, S. H.; Ma, B.; Nguyen, S. T.; Hupp, J. T.;
Albrecht-Schmitt, T. E. A Metal-Organic Framework Material that
Functions as an Enantioselective Catalyst for Olefin Epoxidation. Chem.
Commun. 2006, 2563. (b) Zhu, C.; Yuan, G.; Chen, X.; Yang, Z.; Cui,
Y. Chiral Nanoporous Metal-Metallosalen Frameworks for Hydrolytic
Kinetic Resolution of Epoxides. J. Am. Chem. Soc. 2012, 134, 8058. (c)
Xia, Q.; Li, Z.; Tan, C.; Liu, Y.; Gong, W.; Cui, Y. Multivariate
Metal−Organic Frameworks as Multifunctional Heterogeneous
Asymmetric Catalysts for Sequential Reactions. J. Am. Chem. Soc.
2017, 139, 24, 8259. (d), Song, F.; Wang, C.; Falkowski, J. M.; Ma, L.;
Lin, W. Isoreticular Chiral Metal-Organic Frameworks for Asymmetric
Alkene Epoxidation: Tuning Catalytic Activity by Controlling
Framework Catenation and Varying Open Channel Sizes. J. Am. Chem.
Soc. 2010, 132, 15390. (e) Falkowski, J. M.; Wang, C.; Liu, S.; Lin, W.
Actuation of Asymmetric Cyclopropanation Catalysts: Reversible
Single-Crystal to Single-Crystal Reduction of Metal–Organic
Frameworks.Angew. Chem. Int. Ed. 2011, 50, 8674.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
This work was financially supported by the National Science
Foundation of China (Grant Nos. 21431004, 21620102001,
21875136, and 91856204), the National Key Basic Research
Program of China (2016YFA0203400), Key Project of Basic
Research of Shanghai (17JC1403100 and 18JC1413200), and
the Shanghai Rising-Star Program (19QA1404300).
REFERENCES
(1) (a) Arnum, P. V. Single-Enantiomer Drugs Drive Advances in
Asymmetric Synthesis. Pharm. Technol. 2006, 30, 14. (b) Fumio, T.
Enantiomer Separation: Fundamentals and Practical Methods. Springer,
2004.
(2) Yoon, T. P.; Jacobsen, E. N. Privileged Chiral Catalysts. Science
2003, 299, 1691.
(3) (a) Mukherjee, J. W. Yang, S. Hoffmann, B. List. Asymmetric
Sugiono, E.; Raja, S.; Rueping, M. Complete Field Guide to
Asymmetric BINOL-Phosphate Derived Brønsted Acid and Metal
Catalysis: History and Classification by Mode of Activation; Brønsted
Acidity, Hydrogen Bonding, Ion Pairing, and Metal Phosphates. Chem.
Rev. 2014, 114, 9047.
Brunel, J. M. BINOL: A Versatile Chiral Reagent. Chem. Rev. 2005,
105, 857.
(5) (a) Blaser, H. U.; Schmidt, E. Asymmetric Catalysis on Industrial
Scale: Challenges, Approaches and Solutions. Angew. Chem. Int. Ed.
2004, 43, 2600. (b) Wang, Z., Chen, G.; Ding, K. Self-supported
Catalysts. Chem. Rev. 2009, 109, 322.
(6) (a) Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The
Chemistry and Applications of Metal-Organic Frameworks. Science
2013, 341, 974. (b) Liu, Y.; Xuan, W.; Cui, Y. Engineering Homochiral
MetalOrganic Frameworks for Heterogeneous Asymmetric Catalysis
and Enantioselective Separation. Adv. Mater. 2010, 22, 4112. (c) Yoon,
(7) (a) Das, M. C.; Guo, Q.; He, Y.; Kim, J.; Zhao, C. G.; Hong, K.;
Xiang, S.; Zhang, Z.; Thomas, K. M.; Krishna, R.; Chen, B. Interplay of
Metalloligand and Organic Ligand to Tune Micropores within
Isostructural Mixed-Metal Organic Frameworks (M'MOFs) for Their
Highly Selective Separation of Chiral and Achiral Small Molecules. J.
Am. Chem. Soc. 2012, 134, 8703. (b) Navarro-Sanchez, J.;
Argente-Garcia, A. I.; Moliner-Martinez, Y.; Roca-Sanjuan, D.;
Antypov, D.; Campins-Falco, P.; Rosseinsky, M. J.; Marti-Gastaldo, C.
Peptide Metal-Organic Frameworks for Enantioselective Separation of
Chiral Drugs. J. Am. Chem. Soc. 2017, 139, 4294. (c) Liu, B.; Shekhah,
O.; Arslan, H. K.; Liu, J.; Woll, C.; Fischer, R. A. Enantiopure
Metal-Organic Framework Thin Films: Oriented SURMOF Growth and
Enantioselective Adsorption. Angew. Chem. Int. Ed. 2012, 51, 807. (d)
(12) (a) Makiura, R.; Motoyama, S.; Umemura, Y.; Yamanaka, H.;
Sakata, O.; Kitagawa, H. Surface Nano-architecture of a Metal–Organic
Framework. Nat. Mater. 2010, 9, 565. (b) Peng, Y.; Li, Y.; Ban, Y.; Jin,
H.; Jiao, W.; Liu, X.; Yang, W. Metal-Organic Framework Nanosheets
as Building Blocks for Molecular Sieving Membranes. Science 2014,
346, 1356. (c) Rodenas, T.; Luz, I.; Prieto, G.; Seoane, B.; Miro, H.;
Corma, A.; Kapteijn, F.; Xamena, F. X. L.; Gascon, J. Metal–Organic
Framework Nanosheets in Polymer Composite Materials for Gas
Separation. Nat. Mater. 2015, 14, 48. (d) Liao, W. M.; Zhang, J. H.;
Yin, S. Y.; Lin, H.; Zhang, X.; Wang, J.; Wang, H. P.; Wu, K.; Wang,
Z.; Fan, Y. N.; Pan, M.; Su, C.Y. Tailoring Exciton and Excimer
Emission in Exfoliated Ultrathin 2D-MOF. Nat. Commun. 2018, 9, 2401.
(e) Metal−Organic Nanosheets Formed via Defect-Mediated
Transformation of a Hafnium Metal−Organic Framework. Cliffe, M. J.;
9
ACS Paragon Plus Environment