10.1002/cssc.201802815
ChemSusChem
FULL PAPER
[2] a) A. Basu, S. Thayumanavan, Angew. Chem. Int. Ed. 2002, 41, 716-
738; b) C.-Y. Wang, J. Derosa, M. R. Biscoe, Chem. Sci. 2015, 6, 5105-
5113.
Mansueto, F. M. Perna, A. Salomone, V. Capriati, Chem. Commun. 2014,
50, 8655-8658; d) F. C. Sassone, F. M. Perna, A. Salomone, S. Florio, V.
Capriati, Chem. Commun. 2015, 51, 9459-9462.
[3] D. Hoppe, F. Hintze, P. Tebben, Angew. Chem. Int. Ed. 1990, 29,
1422-1424.
[18] A. Varela, L. K. B. Garve, D. Leonori, V. K. Aggarwal, Angew. Chem.
Int. Ed. 2017, 56, 2127-2131.
[4] a) P. Beak, S. T. Kerrick, S. Wu, J. Chu, J. Am. Chem. Soc. 1994, 116,
3231-3239; b) S. T. Kerrick, P. Beak, J. Am. Chem. Soc. 1991, 113, 9708-
9710.
[19] a) M. Menges, R. Brückner, Eur. J. Org. Chem. 1998, 1023-1030; b)
T. Hense, D. Hoppe, Synthesis 1997, 1394-1398; c) G. Carbone, P.
O'Brien, G. Hilmersson, J. Am. Chem. Soc. 2010, 132, 15445-15450.
[20] For recent works on Weinreb amides from the Pace group, see: a) R.
Senatore, L. Castoldi, L. Ielo, W. Holzer, V. Pace, Org. Lett. 2018, 20,
2685-2688; b) R. Senatore, L. Ielo, E. Urban, W. Holzer, V. Pace, Eur. J.
Org. Chem. 2018, 2466-2470; c) L. Castoldi, S. Monticelli, R. Senatore, L.
Ielo, V. Pace, Chem. Commun. 2018, 54, 6692-6704; d) L. Castoldi, L.
Ielo, P. Hoyos, M. J. Hernáiz, L. De Luca, A. R. Alcántara, W. Holzer, V.
Pace, Tetrahedron 2018, 74, 2211-2217; e) G. Parisi, M. Colella, S.
Monticelli, G. Romanazzi, W. Holzer, T. Langer, L. Degennaro, V. Pace,
R. Luisi, J. Am. Chem. Soc. 2017, 139, 13648-13651; f) V. Pace, I. Murgia,
S. Westermayer, T. Langer, W. Holzer, Chem. Commun. 2016, 52, 7584-
7587; g) V. Pace, W. Holzer, N. De Kimpe, Chem. Rec. 2016, 16, 2061-
2076; For a rare case of unreactivity of Weinreb amides in the presence
of organolithiums, see: h) L. Ielo, S. Touqeer, A. Roller, T. Langer, W.
[5] For authoritative reviews, see: a) D. Hoppe, T. Hense, Angew. Chem.
Int. Ed. 1997, 36, 2282-2316; b) D. Hoppe, F. Marr, M. Brüggemann, in
Organolithiums in Enantioselective Synthesis (Ed.: D. M. Hodgson),
Springer Berlin Heidelberg, Berlin, Heidelberg, 2003, pp. 61-138; c) J.
Clayden, Organolithiums: Selectivity for Synthesis, Pergamon, Oxford,
2002; d) Lithium Compounds in Organic Synthesis: From Fundamentals
to Applications, R. Luisi, V. Capriati, Eds. Wiley-VCH, Weinheim, 2014.
[6] a) D. Hoppe, B. J. Morgan, M. C. Kozlowski, Encyclopedia of Reagents
for Organic Synthesis 2007; b) M. Breuning, M. Steiner, Synthesis 2008
,
2841-2867; c) J.-C. Kizirian, Chem. Rev. 2008, 108, 140-205; d) P. M.
Dewick, Medicinal Natural Products: A Biosynthetic Approach, Wiley,
Chichester, 2009
.
[7] For leading studies on enantiopurity/solvent relationships, see: a) D.
Hoppe, G. Christoph, in The Chemistry of Organolithium Compounds, Vol.
Vol. 2 (Eds.: Z. Rappoport, I. Marek), John Wiley & Sons, Chichester,
2004; b) J.-C. Kizirian, in Topics in Stereochemistry: Stereochemical
Aspects of Organolithium Compounds, Vol. Vol. 26 (Eds.: R. E. Gawley,
J. S. Siegel), Wiley-VCH Verlag, Weinheim, 2010; c) A. Salomone, F. M.
Perna, A. Falcicchio, S. O. Nilsson Lill, A. Moliterni, R. Michel, S. Florio,
D. Stalke, V. Capriati, Chem. Sci. 2014, 5, 528-538; d) F. M. Perna, A.
Salomone, M. Dammacco, S. Florio, V. Capriati, Chem. Eur. J. 2011, 17,
8216-8225; e) R. Mansueto, F. M. Perna, A. Salomone, S. Florio, V.
Capriati, Chem. Commun. 2013, 49, 4911-4913.
Holzer,
V.
Pace,
Angew.
Chem.
Int.
Ed.
2018,
doi:10.1002/anie.201812525; For seminal work, see: i) S. Nahm, S. M.
Weinreb, Tetrahedron Lett. 1981, 22, 3815-3818; For a review on the
addition of organometallics to amides, see: j) V. Pace, W. Holzer, B.
Olofsson, Adv. Synth. Catal. 2014, 356, 3697-3736.
[21] a) K. Watanabe, Molecules 2013, 18, 3183-3194; b) V. Antonucci, J.
Coleman, J. B. Ferry, N. Johnson, M. Mathe, J. P. Scott, J. Xu, Org. Proc.
Res. Dev. 2011, 15, 939-941.
[22] For an authoritative discussion on the development of novel acylating
agents, see: S. Shi, S. P. Nolan, M. Szostak, Acc. Chem. Res. 2018, 51,
2589-2599.
[8] S. K. Ritter, Chem. Eng. News 2017, 95, 18-20.
[9] a) P. O'Brien, Chem. Commun. 2008, 655-667; b) V. M. Foley, R.
Cano, G. P. McGlacken, Tetrahedron: Asymmetry 2016, 27, 1160-1167;
c) J. D. Firth, S. J. Canipa, L. Ferris, P. O'Brien, Angew. Chem. Int. Ed.
2018, 57, 223-226; d) M. J. Dearden, C. R. Firkin, J.-P. R. Hermet, P.
O'Brien, J. Am. Chem. Soc. 2002, 124, 11870-11871; e) N. R. Norcross,
J. P. Melbardis, M. F. Solera, M. A. Sephton, C. Kilner, L. N. Zakharov, P.
C. Astles, S. L. Warriner, P. R. Blakemore, J. Org. Chem. 2008, 73, 7939-
7951; f) B. T. Smith, J. A. Wendt, J. Aubé, Org. Lett. 2002, 4, 2577-2579;
g) J.-P. R. Hermet, M. J. McGrath, P. O'Brien, D. W. Porter, J. Gilday,
Chem. Commun. 2004, 1830-1831.
[23] a) V. Pace, L. Castoldi, A. R. Alcantara, W. Holzer, RSC Adv. 2013,
3, 10158-10162; See also: b) C. G. Kokotos, C. Baskakis, G. Kokotos, J.
Org. Chem. 2008, 73, 8623-8626.
[24] A. Carstens, D. Hoppe, Tetrahedron 1994, 50, 6097-6108.
[25] a) V. Pace, A. Pelosi, D. Antermite, O. Rosati, M. Curini, W. Holzer,
Chem. Commun. 2016, 52, 2639-2642; b) T. Tsubogo, S. Saito, K. Seki,
Y. Yamashita, S. Kobayashi, J. Am. Chem. Soc. 2008, 130, 13321-13332;
c) S. Saito, T. Tsubogo, S. Kobayashi, J. Am. Chem. Soc. 2007, 129,
5364-5365.
[26] L. Castoldi, W. Holzer, T. Langer, V. Pace, Chem. Commun. 2017
,
[10] a) R. K. Henderson, C. Jimenez-Gonzalez, D. J. C. Constable, S. R.
Alston, G. G. A. Inglis, G. Fisher, J. Sherwood, S. P. Binks, A. D. Curzons,
Green Chem. 2011, 13, 854-862; b) D. J. C. Constable, C. Jimenez-
Gonzalez, R. K. Henderson, Org. Proc. Res. Dev. 2007, 11, 133-137; c)
D. Prat, O. Pardigon, H.-W. Flemming, S. Letestu, V. r. Ducandas, P.
Isnard, E. Guntrum, T. Senac, S. p. Ruisseau, P. Cruciani, Org. Proc. Res.
Dev. 2013, 17, 1517-1525; d) P. G. Jessop, Green Chem. 2011, 13, 1391-
1398; e) R. A. Sheldon, Green Chem. 2005, 7, 267-278; f) J. L. Scott, H.
F. Sneddon, in Green Techniques for Organic Synthesis and Medicinal
Chemistry (Eds.: W. Zhang, B. W. Cue), Wiley-VCH, Weinheim, 2018, pp.
21-42.
53, 9498-9501.
[27] a) A. M. Goldys, C. S. P. McErlean, Eur. J. Org. Chem. 2012, 1877-
1888; b) G. Meng, R. Szostak, M. Szostak, Org. Lett. 2017, 19, 3596-
3599.
[28] D. A. Evans, G. Borg, K. A. Scheidt, Angew. Chem. Int. Ed. 2002, 41,
3188-3191.
[29] a) S. Brandänge, E. Holmgren, H. Leijonmarck, B. Rodriguez, Acta
Chem. Scand. 1995, 49, 922-928; b) S. Brandänge, B. Rodriguez, Acta
Chem. Scand. 1987, B41, 740-744.
[30] D. Ferraris, Y.-S. Ko, D. Calvin, T. Chiou, S. Lautar, B. Thomas, K.
Wozniak, C. Rojas, V. Kalish, S. Belyakov, Bioorg. Med. Chem. Lett. 2004
,
[11] P. Anastas, N. Eghbali, Chem. Soc. Rev. 2010, 39, 301-312.
[12] a) J. L. Stymiest, G. Dutheuil, A. Mahmood, V. K. Aggarwal, Angew.
Chem. Int. Ed. 2007, 46, 7491-7494; b) D. Leonori, V. K. Aggarwal, Acc.
Chem. Res. 2014, 47, 3174-3183; c) R. Rasappan, V. K. Aggarwal, Nat.
Chem. 2014, 6, 810-814; d) S. Balieu, G. E. Hallett, M. Burns, T.
Bootwicha, J. Studley, V. K. Aggarwal, J. Am. Chem. Soc. 2015, 137,
4398-4403.
14, 5579-5583.
[31] E. A. Mitchell, A. Peschiulli, N. Lefevre, L. Meerpoel, B. U. W. Maes,
Chem. Eur. J. 2012, 18, 10092-10142.
[32] M. J. McGrath, P. O’Brien, Synthesis 2006, 2233-2241.
[33] See the Supporting Information for full details.
[34] a) S. Monticelli, V. Pace, Aust. J. Chem. 2015, 68, 703-706; b) M.
Stadler, S. Monticelli, T. Seidel, D. Luger, I. Salzer, S. Boehm, W. Holzer,
C. Schwarzer, E. Urban, S. Khom, T. Langer, V. Pace, S. Hering, J. Med.
Chem. 2018, doi: 10.1021/acs.jmedchem.1028b00859.
[13] P. J. Rayner, P. O’Brien, R. A. J. Horan, J. Am. Chem. Soc. 2013
,
135, 8071-8077.
[14] T. Royal, Y. Baumgartner, O. Baudoin, Org. Lett. 2017, 19, 166-169.
[15] M. Burns, S. Essafi, J. R. Bame, S. P. Bull, M. P. Webster, S. Balieu,
J. W. Dale, C. P. Butts, J. N. Harvey, V. K. Aggarwal, Nature 2014, 513,
183-188.
[16] a) V. Pace, L. Castoldi, S. Monticelli, S. Safranek, A. Roller, T. Langer,
W. Holzer, Chem. Eur. J. 2015, 21, 18966-18970; For a perspective, see:
b) V. Pace, S. Monticelli, K. de la Vega-Hernandez, L. Castoldi, Org.
Biomol. Chem. 2016, 14, 7848-7854.
[35] a) V. Pace, L. Castoldi, S. Monticelli, M. Rui, S. Collina, Synlett 2017
28, 879-888; b) V. Pace, L. Castoldi, W. Holzer, Adv. Synth. Catal. 2014
,
,
356, 1761-1766; c) V. Pace, L. Castoldi, A. D. Mamuye, T. Langer, W.
Holzer, Adv. Synth. Catal. 2016, 358, 172-177; Interestingly, vinyl
epoxides undergo a Meinwald-type rearrangement to aldehydes, see: d)
V. Pace, L. Castoldi, E. Mazzeo, M. Rui, T. Langer, W. Holzer, Angew.
Chem. Int. Ed. 2017, 56, 12677-12682.
[17] For reviews, see: a) U. Azzena, M. Carraro, L. Pisano, S. Monticelli,
R. Bartolotta, V. Pace, ChemSusChem 2018
,
in press, doi:
10.1002/cssc.201801768; b) K. Watanabe, N. Yamagiwa, Y. Torisawa,
Org. Proc. Res. Dev. 2007, 11, 251-258; For interesting examples in
organolithium chemistry, see: c) V. Mallardo, R. Rizzi, F. C. Sassone, R.
This article is protected by copyright. All rights reserved.