5788 Journal of Medicinal Chemistry, 2009, Vol. 52, No. 19
Giblin et al.
5-Azaindole 36 is an excellent compound for further evalua-
tion of the utility of CB2 agonists for the treatment of pain. The
activity profile of this compound also provides compelling
evidence of a role for centrally located CB2 receptors in the
modulation of chronic inflammatory pain.
M.; Iida, I.; Tomishima, Y.; Toda, Y.; Saito, S. N-Alkylidenearylcarbox-
amides as new potent and selective CB2 cannabinoid receptor agonists
with good oral bioavailability. Bioorg. Med. Chem. Lett. 2007, 17,
6299–6304.
(14) Ermann, M.; Riether, D.; Walker, E. R.; Mushi, I. F.; Jenkins,
J. E.; Noya-Marino, B.; Brewer, M. L.; Taylor, M. G.; Amouzegh,
P.; East, S. P.; Dymock, B. W.; Gemkow, M. J.; Kahrs, A. F.;
Ebneth, A.; Loebbe, S.; O’Shea, K.; Shih, D.-T.; Thomson, D.
Arylsulfonamide CB2 receptor agonists: SAR and optimization of
CB2 selectivity. Bioorg. Med. Chem. Lett. 2008, 18, 1725–1729.
(15) Mitchell, W. L.; Giblin, G. M. P.; Naylor, A.; Eatherton, A. J.;
Slingsby, B. P.; Rawlings, A. D.; Jandu, K. S.; Haslam, C. P.;
Brown, A. J.; Goldsmith, P.; Clayton, N. M.; Wilson, A. W.;
Chessell, I. P.; Green, R. H.; Whittington, A. R.; Wall, I. D.
Pyridine-3-carboxamides as novel CB2 agonists for analgesia.
Bioorg. Med. Chem. Lett. 2009, 19, 259–263.
Supporting Information Available: Assay methods, synthetic
procedures, and compound characterization. This material is
References
(1) Baker, D.; Pryce, G.; Giovannoni, G.; Thompson, A. J. The
therapeutic potential of Cannabis. Lancet Neurol. 2003, 2, 291–298.
(2) Matsuda, L. A.; Lolait, S. J.; Brownstein, M. J.; Yound, A. C.;
Bonner, T. I. Structure of a cannabinoid receptor and functional
expressionof the cloned cDNA. Nature (London) 1990, 346, 561–564.
(3) Munro, S.; Thomas, K. L.; Abu-Shaar, M. Molecular character-
ization of a peripheral receptor for cannabinoids. Nature (London)
1993, 365, 61–65.
(16) Unsubstituted 6-azaindole is reported to have pKa 8. See: Twine,
S. M.; Murphy, L.; Phillips, R. S.; Callis, P.; Cash, M. T.; Szabo,
A. G. The photophysical properties of 6-azaindole. J. Phys. Chem.
B 2003, 107, 637–645.
(17) Des-trifluoromethyl analogues of GW842166X have no significant
(4) Brown, A. J. Novel cannabinoid receptors. Br. J. Pharmacol. 2007,
152, 567–575.
activity at the CB2 receptor at 10 μM.
(18) Dalpozzo, R.; Bartoli, G. Bartoli indole synthesis. Curr. Org.
Chem. 2005, 9, 163–178.
(19) (a) Dowell, S. J.; Brown, A. J. Yeast assays for G-protein-coupled
receptors. Recept. Channels 2002, 8, 343–352.(b) Procedures for the
syntheses of compounds and details of the yeast CB2 reporter and
Chinese hamster ovary cAMP assays used to assess their potency at the
CB2 receptor are described in: Eatherton, A. J.; Giblin, G. M. P.;
Mitchell, W. L.; Naylor, A.; Page, L. W.; Swarbrick, M.; Sweeting, J. A.
PCT Int. Appl. WO 2007017237, 2007.
(5) Cabral, G. A.; Marciano-Cabral, F. Cannabinoid receptors in
microglia of the central nervous system: immune functional rele-
vance. J. Leukocyte Biol. 2005, 78, 1192–1197. Van Sickle, M. D.;
Duncan, M.; Kingsley, P. J.; Mouihate, A.; Urbani, P.; Mackie, K.;
Stella, N.; Makriyannis, A.; Piomelli, D.; Davison, J. S.; Marnett, L. J.;
Marzo, V. D.; Pittman, Q. J.; Patel, K. D.; Sharkey, K. A. Identification
and functional characterization of brainstem cannabinoid CB2 recep-
tors. Science 2005, 310, 329–332.
(6) Pertwee, R. G. Cannabinoid receptors and pain. Prog. Neurobiol.
(20) Clarke, S. E.; Jeffrey, P. Utility of metabolic stability screening:
comparison of in vitro and in vivo clearance. Xenobiotica 2001, 31,
591–598.
2001, 63, 569–611.
(7) For a recent example of dual CB1/CB2 agonists see the following:
Dziadulewicz, E. K.; Bevan, S. J.; Brain, C. T.; Coote, P. R.;
Culshaw, A. J.; Davis, A. J.; Edwards, L. J.; Fisher, A. J.; Fox, A.
J.; Gentry, C.; Groarke, A.; Hart, T. W.; Huber, W.; James, I. F.;
Kesingland, A.; La Vecchia, L.; Loong, Y.; Lyothier, I.; McNair,
K.; O’Farrell, C.; Peacock, M.; Portmann, R.; Schopfer, U.;
Yaqoob, M.; Zadrobilek, J. Naphthalen-1-yl-(4-pentyloxynaph-
thalen-1-yl)methanone: a potent, orally bioavailable human CB1/
CB2 dual agonist with antihyperalgesic properties and restricted
central nervous system penetration. J. Med. Chem. 2007, 50,
3851–3856.
(8) (a) Gallant, M.; Dufresne, C.; Gareau, Y.; Guay, D.; Leblanc, Y.;
Prasit, P.; Rochette, C.; Sawyer, N.; Slipetz, D. M. New class of
potent ligands for the human peripheral cannabinoid receptor.
Bioorg. Med. Chem. Lett. 1996, 6, 2263–2268. (b) Clayton, N.;
Marshall, F. H.; Bountra, C.; O'Shaughnessy, C. T. CB1 and CB2
cannabinoid receptors are implicated in inflammatory pain. Pain
2002, 96, 253–260.
(9) Malan, T. P., Jr.; Ibrahim, M. M.; Deng, H.; Liu, Q.; Mata, H. P.;
Vanderah, T.; Porreca, F.; Makriyannis, A. CB2 cannabinoid recep-
tor-mediated peripheral antinociception. Pain 2001, 93, 239–245.
(10) (a) Quartilho, A.; Mata, H. P.; Ibrahim, M. M.; Vanderah, T. W.;
Porreca, F.; Makriyannis, A.; Malan, T. P., Jr. Inflammatory
hyperalgesia by activation of peripheral CB2 cannabinoid recep-
tors. Anesthesiology 2003, 99, 955–960. (b) Ibrahim, M. M.; Deng, H.;
Zvonok, A.; Cockayne, D. A.; Kwan, J.; Mata, H. P.; Vanderah, T. W.;
Lai, J.; Porreca, F.; Makriyannis, A.; Malan, T. P., Jr. Activation of CB2
cannabinoid receptors by AM1241 inhibits experimental neuropathic
pain: pain inhibition by receptors not present in the CNS. Proc. Natl.
Acad. Sci.U.S.A. 2003, 100, 10529–10533.
(11) Giblin, G. M. P.; O’Shaughnessy, C. T.; Naylor, A.; Mitchell, W.
L.; Eatherton, A. J.; Slingsby, B. P.; Rawlings, D. A.; Goldsmith,
P.; Brown, A. J.; Haslam, C. P.; Clayton, N. M.; Wilson, A. W.;
Chessell, I. P.; Wittington, A. R.; Green, R. Discovery of 2-[(2,4-
dichlorophenyl)amino]-N-[(tetrahydro-2H-pyran-4-yl)methyl]-
4-(trifluoromethyl)-5-pyrimidinecarboxamide, a selective CB2 re-
ceptor agonist for the treatment of inflammatory pain. J. Med.
Chem. 2007, 50, 2597–2600.
(21) Iadarola, M. J.; Douglass, J.; Civelli, O.; Naranjo, J. R. Differential
activation of spinal cord dynorphin and enkephalin neurons during
hyperalgesia: evidence using cDNA hybridization. Brain Res. 1988,
455, 205–212. Hay, C. H.; Trevethick, M. A.; Wheeldon, A.; Browers,
J. S.; De Belleroche, J. S. The potential role of spinal cord cycloox-
ygenase-2 in the development of Freund's complete adjuvant-induced
changes in hyperalgesia and allodynia. Neuroscience 1997, 78, 843–
850. See Supporting Information for protocol .
(22) Wilson, A. W.; Medhurst, S. J.; Dixon, C. I.; Bontoft, N. C.;
Winyard, L. A.; Brackenborough, K. T.; De Alba, J.; Clarke, C. J.;
Gunthorpe, M. J.; Hicks, G. A.; Bountra, C.; McQueen, D. S.;
Chessell, I. P. An animal model of chronic inflammatory pain:
pharmacological and temporal differentiation from acute models.
Eur. J. Pain 2006, 10, 537–549.
(23) Polli, J. W.; Wring, S. A.; Humphreys, J. E.; Huang, L.; Morgan,
J. B.; Webster, L. O.; Serabjit-Singh, C. S. Rational use of in vitro
P-glycoprotein assays in drug discovery. J. Pharmacol. Exp.Ther.
2001, 299, 620–628.
(24) Aurilio, C.; Pota, V.; Pace, M. C.; Passavanti, M. B. e; Barbarisi,
M. Ionic channels and neuropathic pain: physiopathology and
applications. J. Cell. Physiol. 2008, 215, 8–14.
(25) Raub, T. J. P-Glycoprotein recognition of substrates and circum-
vention through rational drug design. Mol. Pharmaceutics 2006, 3,
3–25.
(26) For original Bartoli synthetic route see Supporting Information.
(27) Bottaccio, G.; Campolmi, S.; Carletti, V.; Marchi, M. 3-Carboxy-
1-methylpyrrole-2-acetic Acid and Its Alkali Metal Salts. Eur. Pat.
Appl. EP 105664, 1984.
(28) 36 has <10% activity (binding) across a CEREP panel of targets
at 1 μM with the exception of R2 (25%), κ opioid (11%), 5HT1A
(24%), 5HT2A (11%), 5HT5A (15%), NE transporter (15%).
Further details are in Supporting Information.
(29) Ross, R. A.; Brockie, H. C.; Stevenson, L. A.; Murphy, V. L.;
Templeton, F.; Makriyannis, A.; Pertwee, R. G. Agonist-inverse
agonist characterization at CB1 and CB2 cannabinoid receptors of
L759633, L759656 and AM630. Br. J. Pharmacol. 1999, 126, 665–
672.
(12) Frost, J. M.; Dart, M. J.; Tietje, K. R.; Garrison, T. R.; Grayson,
G. K.; Daza, A. V.; El-Kouhen, O. F.; Miller, L. N.; Li, L.; Yao,
B. B.; Hsieh, G. C.; Pai, M.; Zhu, C. Z.; Chandran, P.; Meyer,
M. D. Indol-3-yl-tetramethylcyclopropyl ketones: effects of indole
ring substitution on CB2 cannabinoid receptor activity. J. Med.
Chem. 2008, 51, 1904–1912.
(13) Ohta, H.; Ishizaka, T.; Tatsuzuki, M.; Yoshinaga, M.; Iida, I.;
Yamaguchi, T.; Tomishima, Y.; Futaki, N.; Toda, Y.; Saito, S.
Imine derivatives as new potent and selective CB2 cannabinoid
receptor agonists with an analgesic action. Bioorg. Med. Chem.
2008, 16, 1111–1124. Ohta, H.; Ishizaka, T.; Tatsuzuki, M.; Yoshinaga,
(30) For technical reasons, a CB1 or CB2 antagonist challenge is not
possible in the joint pain protocol. For a more detailed discussion
see Supporting Information. For hypothermia methods, see the
following: Fox, A.; Kesingland, A.; Gentry, C.; McNair, K.; Patel,
S.; Urban, L.; James, I. The role of central and peripheral canna-
binoid 1 receptors in the anti-hyperalgesic activity of cannabinoids
in a model of neuropathic pain. Pain 2001, 92, 91–100.
(31) Eatherton, A. J.; Giblin, G. M. P.; Johnson, M. R.; Mitchell, W. L.;
Perboni, A.; Slingsby, B. P. Preparation of Pyrrolopyridine Deri-
vatives as Cannabinoid Receptor Modulators. PCT Int. Appl. WO
2005121140, 2005.