C O M M U N I C A T I O N S
Table 1. Catalytic Asymmetric Deprotonation-Electrophilic
Trapping
Scheme 4
entry
SM
diamine
equiv
producta
yield (%)
erb
1
2
3
4
5
6
7
8
1
1
3
3
3
3
14
14
(-)-sp
(+)-11
(-)-sp
(+)-11
(-)-sp
(+)-11
(-)-sp
(+)-11
0.2
0.2
0.2
0.2
0.1
0.06
0.2
0.2
(S)-2
(R)-2
(S)-4
(R)-4
(S)-4
(R)-4
(S)-15
(R)-15
76
66
77
72
54
63
67
68
90:10
6:94
92:8
6:94
In summary, a novel ligand exchange approach to catalytic
asymmetric deprotonation-electrophilic trapping has been devel-
oped. Using (-)-sparteine and our previously reported (+)-sparteine
surrogate 11, this methodology allows access to either enantiomer
of useful products in good yields using substoichiometric amounts
of chiral diamines.
81:19
15:85
83:17
11:89
a Reaction conditions: 1.3 equiv of s-BuLi, 1.2 equiv of bispidine 13,
0.06-0.2 equiv of (-)-sparteine ((-)-sp) or (+)-11, Et2O, -78 °C, 5 h for
1 and 3 or 3 h for 14 then add electrophile (Me3SiCl for 1, Bu3SnCl for 3,
Ph2CO for 14). b Enantiomeric ratio determined by chiral GC (Betadex 120)
for 2 and by chiral HPLC (Chiracel OD) for 4 and 15.
Acknowledgment. We thank the EPSRC for funding.
Supporting Information Available: Full experimental procedures
and characterization data. This material is available free of charge via
bispidine 13; the antipode (R)-2 of 94:6 er was formed in 66%
yield (entry 2), approaching the stoichiometric result (84% yield,
95:5 er10). Deprotonation of O-alkyl carbamate 3 with 1.3 equiv of
s-BuLi, 0.2 equiv of (-)-sparteine, and 1.2 equiv of bispidine 13
and trapping gave stannane (S)-4 of 92:8 er in 77% yield (entry 3)
(stoichiometric: 73% yield, 99:1 er). Similarly, use of Me3SiCl in
place of Bu3SnCl gave the (S)-trimethylsilyl adduct18 of 89:11 er
in 69% yield (stoichiometric: 64% yield, 98:2 er). As with 1, (+)-
11 performed better than (-)-sparteine in the deprotonation of 3
under otherwise identical conditions; (R)-4 of 94:6 er was generated
in 72% yield (entry 4), which is almost identical to the stoichio-
metric result (84%, 96:4 er10).
An investigation into lower chiral diamine loadings was carried
out using O-alkyl carbamate 3 (entries 5 and 6). Use of 0.1 equiv
of (-)-sparteine and 1.2 equiv of bispidine 13 with 3 gave (S)-4 of
81:19 er (54% yield), whereas use of just 0.06 equiv of (+)-11
under the same conditions gave (R)-4 of 85:15 er (63% yield). The
reduced enantioselectivity with <0.2 equiv of chiral diamine
suggests that background deprotonation by free s-BuLi or s-BuLi/
bispidine 13 is significant. Indeed, reaction of O-alkyl carbamate
3 with s-BuLi alone or s-BuLi/bispidine 13 gave adduct rac-4 in
17 and 15% yields, respectively.
Similar success was obtained in the catalytic asymmetric
lithiation trapping of phosphine borane 14.16,19 Lithiation of 14 with
1.3 equiv of s-BuLi, 0.2 equiv of (-)-sparteine, and 1.2 equiv of
bispidine 13 followed by benzophenone quench gave (S)-15 of 83:
17 er in 67% yield (entry 7). This compares well with 83% yield
of (S)-15 of 88:12 er under stoichiometric conditions.16 The antipode
(R)-15 was prepared in 68% yield and 89:11 er using 0.2 equiv of
(+)-11 and 1.2 equiv of bispidine 13 (entry 8) (stoichiometric
result: 78% yield, 96:4 er16).
Finally, to showcase our catalytic asymmetric deprotonation
methodology, we applied it to the synthesis of bis-phosphine
boranes (R,R)- and (S,S)-16, precursors of useful chiral bis-
phosphines for asymmetric hydrogenation.19b Thus, lithiation of
phosphine borane 14 using 1.3 equiv of s-BuLi, 0.2 equiv of (+)-
11, and 1.2 equiv of bispidine 13 followed by Cu(II)-promoted
dimerization of the intermediate organolithium gave (R,R)-16 (53%
yield, >99:1 er by chiral HPLC) and meso-16 (15% yield) (Scheme
4). This catalytic asymmetric synthesis of (R,R)-16 is the shortest
and most direct approach to date.20 The analogous reaction with
(-)-sparteine gave (S,S)-16 of >99:1 er in 46% yield (with 12%
meso-16).
References
(1) Hoppe, D.; Hense, T. Angew. Chem., Int. Ed. Engl. 1997, 36, 2282.
(2) For a recent example, see: Zhu, J.; Grigoriadis, N. P.; Lee, J. P.; Porco,
J. A., Jr. J. Am. Chem. Soc. 2005, 127, 9342.
(3) (a) Denmark, S. E.; Nakajima, N.; Nicaise, O. J.-C. J. Am. Chem. Soc.
1994, 116, 8797. (b) Gittins, C. A.; North, M. Tetrahedron: Asymmetry
1997, 8, 3789. (c) Alexakis, A.; Amiot, F. Tetrahedron: Asymmetry 2002,
13, 2117.
(4) (a) Klein, S.; Marek, I.; Poisson, J. F.; Normant, J. F. J. Am. Chem. Soc.
1995, 117, 8853. (b) Norsikian, S.; Marek, I.; Klein, S.; Poisson, J. F.;
Normant, J. F. Chem.sEur. J. 1999, 5, 2055.
(5) Asano, Y.; Iida, A.; Tomioka, K. Chem. Pharm. Bull. 1998, 46, 184.
(6) (a) Jensen, D. R.; Pugsley, J. S.; Sigman, M. S. J. Am. Chem. Soc. 2001,
123, 7475. (b) Ferraira, E. M.; Stoltz, B. M. J. Am. Chem. Soc. 2001,
123, 7725. (c) Sigman, M. S.; Mandal, S. K. J. Org. Chem. 2003, 68,
7535. (d) Bagndanoff, J. T.; Stoltz, B. M. Angew. Chem., Int. Ed. 2004,
43, 353.
(7) Outside the alkyllithium/(-)-sparteine area, chiral lithium amide base-
mediated catalytic asymmetric deprotonation is well studied: (a) Asami,
M.; Ishizaki, T.; Inoue, S. Tetrahedron: Asymmetry 1994, 5, 793. (b)
Yamashita, T.; Sato, D.; Kiyoto, T.; Kumar, A.; Koga, K. Tetrahedron
Lett. 1996, 37, 8195. (c) So¨dergren, M. J.; Bertilsson, S. K.; Andersson,
P. G. J. Am. Chem. Soc. 2000, 112, 6610.
(8) Hodgson, D. M.; Lee, G. P.; Marriott, R. E.; Thompson, A. J.; Wisedale,
R.; Witherington, J. J. Chem. Soc., Perkin Trans. 1 1998, 2151.
(9) Beak reported this first: use of 1.3 equiv of s-BuLi and 0.25 equiv of
(-)-sparteine on 1 gave (S)-2 of 64% ee and 33% yield. See: Beak, P.;
Kerrick, S. T.; Wu, S.; Chu, J. J. Am. Chem. Soc. 1994, 116, 3231.
(10) Dearden, M. J.; Firkin, C. R.; Hermet, J.-P. R.; O’Brien, P. J. Am. Chem.
Soc. 2002, 124, 11870.
(11) For examples of ligand exchange with (-)-sparteine, see: (a) Wilhelm,
R.; Widdowson, D. A. Org. Lett. 2001, 3, 3079. (b) Rutherford, J. L.;
Hoffmann, D.; Collum, D. B. J. Am. Chem. Soc. 2002, 124, 264.
(12) Basu, A.; Thayumanavan, S. Angew. Chem., Int. Ed. 2002, 41, 716.
(13) Beak had previously reported what amounts to such a ligand exchange
approach: use of 1.3 equiv of s-BuLi with 0.1 equiv of (-)-sparteine
and 0.9 equiv of TMEDA on 1 gave 2 of 3% ee and 64% yield (see ref
9). The lack of enantioselectivity presumably reflects the faster deproto-
nation of 1 by s-BuLi/TMEDA than by s-BuLi/(-)-sparteine.
(14) Wu, T. R.; Chong, J. M. J. Am. Chem. Soc. 2005, 127, 3244.
(15) O’Brien, P.; Wiberg, K. B.; Bailey, W. F.; Hermet, J.-P. R.; McGrath,
M. J. J. Am. Chem. Soc. 2004, 126, 15480.
(16) Asymmetric deprotonation of phosphine borane 14 has been successfully
carried out using s-BuLi/diamine 12: Johansson, M. J.; Schwartz, L.;
Amedjkouh, M.; Kann, N. Tetrahedron: Asymmetry 2004, 15, 3531.
(17) Bispidine 13 was synthesized in two steps (see Supporting Information
for full details): Garrison, G. L.; Berlin, K. D.; Scherlag, B. J.; Lazzara,
R.; Patterson, E.; Fazekas, T.; Sangiah, S.; Chen, C.-L.; Schubot, F. D.;
van der Helm, D. J. Med. Chem. 1996, 39, 2559.
(18) Behrens, K.; Fro¨hlich, R.; Meyer, O.; Hoppe, D. Eur. J. Org. Chem. 1998,
2397.
(19) (a) Muci, A. R.; Campos, K. R.; Evans, D. A. J. Am. Chem. Soc. 1995,
117, 9075. (b) Imamoto, T.; Watanabe, J.; Wada, Y.; Masuda, H.; Yamada,
H.; Tsuruta, H.; Matsukawa, S.; Yamaguchi, K. J. Am. Chem. Soc. 1998,
120, 1635. (c) Wolfe, B.; Livinghouse, T. J. Org. Chem. 2001, 66, 1514.
(20) Cre´py, K. V. L.; Imamoto, T. Tetrahedron Lett. 2002, 43, 7735.
JA056026D
9
J. AM. CHEM. SOC. VOL. 127, NO. 47, 2005 16379