Angewandte
Chemie
Takemoto, J. Am. Chem. Soc. 2005, 127, 119 – 125; m) T. P. Yoon,
[1] Enantioselective, catalytic Reissert reactions: a) M. Takamura,
K. Funabashi, M. Kanai, M. Shibasaki, J. Am. Chem. Soc. 2000,
122, 6327 – 6328; b) M. Takamura, K. Funabashi, M. Kanai, M.
Shibasaki, J. Am. Chem. Soc. 2001, 123, 6801 – 6808; c) K.
Funabashi, H. Ratni, M. Kanai, M. Shibasaki, J. Am. Chem. Soc.
2001, 123, 10784 – 10785; d) E. Ichikawa, M. Suzuki, K. Yabu,
M. Albert, M. Kanai, M. Shibasaki, J. Am. Chem. Soc. 2004, 126,
11808 – 11809; enantioselective catalytic hydrogenation of N-
iminopyridinium ylides: e) C. Y. Legault, A. B. Charette, J. Am.
Chem. Soc. 2005, 127, 8966 – 8967; enantioselective hydrogena-
tion of quinolines: f) W.-B. Wang, S.-M. Lu, P.-Y. Yang, X.-W.
Han, Y.-G. Zhou, J. Am. Chem. Soc. 2003, 125, 10536 – 10537.
[2] For a review of enantioselective catalytic Friedel–Crafts reac-
tions, see: a) M. Bandini, A. Melloni, A. Umani-Ronchi, Angew.
Chem. 2004, 116, 560 – 566; Angew. Chem. Int. Ed. 2004, 43, 550 –
556; for recent developments, see: b) M. S. Taylor, E. N.
Jacobsen, J. Am. Chem. Soc. 2004, 126, 10558 – 10559; c) D.
Uraguchi, K. Sorimachi, M. Terada, J. Am. Chem. Soc. 2004, 126,
11804 – 11805; d) C. Palomo, M. Oiarbida, B. G. Kardak, J. M.
García, A. Linden, J. Am. Chem. Soc. 2005, 127, 4154 – 4155;
e) D. A. Evans, K. R. Fandrick, H.-J. Song, J. Am. Chem. Soc.
E. N. Jacobsen, Angew. Chem. 2005, 117, 470 – 472; Angew.
Chem. Int. Ed. 2005, 44, 466 – 468; n) A. Berkessel, F. Cleemann,
S. Mukherjee, T. N. Müller, J. Lex, Angew. Chem. 2005, 117, 817 –
821; Angew. Chem. Int. Ed. 2005, 44, 807 – 811; o) A. Berkessel,
S. Mukherjee, F. Cleemann, T. N. Müller, J. Lex, Chem.
Commun. 2005, 1898 – 1900; p) B.-J. Li, L. Jiang, M. Liu, Y.-C.
Chen, L.-S. Ding, Y. Wu, Synlett 2005, 4, 603 – 606; q) D. E.
Fuerst, E. N. Jacobsen, J. Am. Chem. Soc. 2005, 127, 8964 – 8965.
[8] For representative examples of other classes of chiral hydrogen-
bond-donor catalysts, see: a) E. J. Corey, M. J. Grogan, Org. Lett.
1999, 1, 157 – 160; b) Y. Huang, A. K. Unni, A. N. Thadani, V. H.
Rawal, Nature 2003, 424, 146; c) B. M. Nugent, R. A. Yoder, J. N.
Johnston, J. Am. Chem. Soc. 2004, 126, 3418 – 3419; d) N. T.
McDougal, S. E. Schaus, J. Am. Chem. Soc. 2003, 125, 12094 –
12095; e) T. Akiyama, J. Itoh, K. Yokota, K. Fuchibe, Angew.
Chem. 2004, 116, 1592– 1594; Angew. Chem. Int. Ed. 2004, 43,
1566 – 1568.
[9] a) K. W. Bentley, Nat. Prod. Rep. 2004, 21, 395 – 424, and
references therein; b) for a review of methods for the prepara-
tion of enantioenriched tetrahydroisoquinolines, see: M. Chrza-
nowska, M. D. Rozwadowska, Chem. Rev. 2004, 104, 3341 – 3370.
[10] A preliminary survey of ketone enolates did not yield satisfac-
tory results; for example, 2-(trimethylsilyloxy)propene under-
went addition to isoquinoline in the presence of TrocCl and 1 to
yield the corresponding dihydroisoquinoline in 14% ee (unopti-
mized).
ꢀ
2005, 127, 8942– 8943; asymmetric, catalytic C H activation:
f) R. K. Thalji, J. A. Ellman, R. G. Bergman, J. Am. Chem. Soc.
2004, 126, 7192– 7193.
[3] a) D. L. Comins, M. M. Badawi, Heterocycles 1991, 32, 1869 –
1873; b) G. B. Richter-Addo, D. A. Knight, M. A. Dewey, A. M.
Arif, J. A. Gladysz, J. Am. Chem. Soc. 1993, 115, 11863 – 11873;
c) D. L. Comins, S. P. Joseph, R. R. Goehring, J. Am. Chem. Soc.
1994, 116, 4719 – 4728; d) D. Barbier, C. Marazano, C. Riche,
B. C. Das, P. Potier, J. Org. Chem. 1998, 63, 1767 – 1772; e) K. T.
Wanner, H. Beer, G. Höfner, M. Ludwig, Eur. J. Org. Chem.
1998, 2019 – 2029; f) T. Itoh, K. Nagata, M. Miyazaki, A.
Ohsawa, Synlett 1999, 7, 1154 – 1156.
[11] A list of solvents and other catalysts tested may be found in the
Supporting Information.
[12] Slow evaporation of a solution of 1 in hexanes/diethyl ether
yielded crystals suitable for X-ray analysis; crystal data for 1:
C32H50N4OS, Mr = 538.82, colorless prism, 0.20 0.18 0.14 mm,
orthorhombic, a = 16.590(3), b = 17.202(3), c = 22.411(4) , V=
6396(2) 3, T= 193(2) K, space group C2221, Z = 8, 1calcd
=
1.119 gcmꢀ3, m = 0.130 mmꢀ1; a total of 22451 reflections were
measured, 7659 independent, final residuals were R1 = 0.0394
and wR2 = 0.0877 for 7659 observed reflections with I > 2s(I),
543 parameters, GOF = 0.960, maximum residual electron
density 0.438 eꢀ3; data were collected on a Bruker SMART
CCD (charge-coupled device) based diffractometer equipped
with an Oxford Cryostream low-temperature apparatus; data
were measured by using scans of 0.38 per frame for 45 s, such that
a hemisphere was collected; a total of 1271 frames were
collected with a maximum resolution of 0.76 ; the first
50 frames were recollected at the end of data collection to
monitor for decay; the structure was solved by the direct method
(G. M. Sheldrick, SHELXL-97, Program for the Solution of
Crystal Structures, University of Göttingen, Germany, 1997)
followed by refinement by the least-squares method on F2
(SHELXL-97); all non-hydrogen atoms were refined anisotropi-
cally; the positions of hydrogen atoms were found by difference
Fourier methods and refined isotropically. CCD-275454 contains
the supplementary crystallographic data for this paper. These
data can be obtained free of charge from The Cambridge
request/cif.
[4] For representative examples, see reference [3c], references cited
therein, and: a) D. L. Comins, X. Chen, L. A. Morgan, J. Org.
Chem. 1997, 62, 7435 – 7438; b) D. L. Comins, D. H. LaMunyon,
X. Chen, J. Org. Chem. 1997, 62, 8182– 8187; c) J. T. Kuethe,
D. L. Comins, Org. Lett. 2000, 2, 855 – 857.
[5] a) T. Itoh, M. Miyazaki, K. Nagata, H. Hasegawa, A. Ohsawa,
K. T. Nakamura, Heterocycles 1998, 47, 125 – 128; b) for a
diastereoselective variant that employs a chiral acyl chloride,
see reference [3f].
[6] a) Examples of enantioselective additions of silyl ketene acetals
to 6,7-dialkoxy-3,4-dihydroisoquinoline N-oxides have been
reported: S.-I. Murahashi, Y. Imada, T. Kawakami, K. Harada,
Y. Yonemushi, N. Tomita, J. Am. Chem. Soc. 2002, 124, 2888 –
2889; b) proline-catalyzed Mannich reactions of 3,4-dihydro-b-
carbolines have been reported: T. Itoh, M. Yokoya, K. Miyauchi,
K. Nagata, A. Ohsawa, Org. Lett. 2003, 5, 4301 – 4304.
[7] For enantioselective reactions catalyzed by chiral urea or
thiourea compounds, see reference [2b] and: a) M. S. Sigman,
E. N. Jacobsen, J. Am. Chem. Soc. 1998, 120, 4901 – 4902; b) P.
Vachal, E. N. Jacobsen, Org. Lett. 2000, 2, 867 – 870; c) M. S.
Sigman, P. Vachal, E. N. Jacobsen, Angew. Chem. 2000, 112,
1336 – 1338; Angew. Chem. Int. Ed. 2000, 39, 1279 – 1281; d) P.
Vachal, E. N. Jacobsen, J. Am. Chem. Soc. 2002, 124, 10012–
10014; e) A. G. Wenzel, E. N. Jacobsen, J. Am. Chem. Soc. 2002,
124, 12964 – 12965; f) A. G. Wenzel, M. P. Lalonde, E. N.
Jacobsen, Synlett 2003, 12, 1919 – 1922; g) T. Okino, Y. Hoashi,
Y. Takemoto, J. Am. Chem. Soc. 2003, 125, 12672– 12673;
h) G. D. Joly, E. N. Jacobsen, J. Am. Chem. Soc. 2004, 126, 4102–
4103; i) T. Okino, S. Nakamura, T. Furukawa, Y. Takemoto, Org.
Lett. 2004, 6, 625 – 627; j) Y. Sohtome, A. Tanatani, Y. Hashi-
moto, K. Nagasawa, Tetrahedron Lett. 2004, 45, 5589 – 5592;
k) Y. Hoashi, T. Yabuta, Y. Takemoto, Tetrahedron Lett. 2004,
45, 9185 – 9188; l) T. Okino, Y. Hoashi, T. Furukawa, X. Xu, Y.
[13] A neutral chloroamide structure, rather than an ion pair, may
represent a more accurate depiction of the bonding interactions
in N-acyliminium chlorides in nonpolar organic solvents (for an
NMR spectroscopic study that supports this assertion, see: A. K.
Bose, G. Spiegelman, M. S. Manhas, Tetrahedron Lett. 1971,
3167 – 3170). Calculations that use the density-functional theory
Angew. Chem. Int. Ed. 2005, 44, 6700 –6704
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim