6 (a) R. H. Grubbs and S. Chang, Tetrahedron, 1998, 54, 4413; (b)
A. Fu¨rstner, Angew. Chem., Int. Ed., 2000, 39, 3012; (c) M. Schuster and
S. Blechert, Angew. Chem., Int. Ed. Engl., 1997, 36, 2036.
7 (a) K. C. Nicolaou, T. Montagnon, G. Vassilikogiannakis and
C. J. N. Mathison, J. Am. Chem. Soc., 2005, 127, 8872; (b)
J. D. Winkler, J. M. Holland, J. Kasparec and P. H. Axelsen,
Tetrahedron, 1999, 55, 8199; (c) T. R. Hoye and M. A. Promo,
Tetrahedron Lett., 1999, 40, 1429; (d) Y. J. Kim and D. Lee, Org. Lett.,
2004, 6, 4351; (e) G. Vassilikogiannakis, I. Margaros and M. Tofi, Org.
Lett., 2004, 6, 205; (f) M. Arisawa, C. Kato, H. Kaneko, A. Nishida and
M. Nakagawa, J. Chem. Soc., Perkin Trans. 1, 2000, 1873; (g)
K. Go¨rlitzer and A. Lorenz, Pharmazie, 2004, 59, 763; (h) S. C. Cho,
P. H. Dussault, A. D. Lisec, E. C. Jensen and K. W. Nickerson, J. Chem.
Soc., Perkin Trans. 1, 1999, 193; (i) M. Delgado and J. D. Martin,
J. Org. Chem., 1999, 64, 4798; (j) S. E. Denmark and S.-M. Yang, J. Am.
Chem. Soc., 2002, 124, 2102; (k) J. M. Daugherty, M. Jime´nez and
P. R. Hanson, Tetrahedron, 2005, 61, 6218.
obtained by preparative HPLC.§ With the desired cycloalkene
in hand, the completion of the synthesis was straightforward,
comprising an oxidative cleavage of the PMP-ether with CAN22
followed by demethylation using BBr3 in CH2Cl2 at 278 uC. While
the spectroscopic data of synthetic aspercyclide C (1) are in
excellent agreement with those reported in the literature,§ the
optical rotation of our sample ([a]2D3 +229.7 (c 0.39, MeOH)) is
significantly higher than that given in ref. 4 ([a]2D3 +122.5 (c 0.4,
MeOH)). Despite this discrepancy in magnitude, the match of all
other data leaves no doubt that the constitution and stereo-
chemistry of 1 have previously been correctly assigned by
spectroscopic means.
Generous financial support by the Max-Planck-Gesellschaft, the
Fonds der Chemischen Industrie (Kekule´ stipend to C. M.), and
the Merck Research Council is gratefully acknowledged. We thank
Dr C. Nevado for her help with the semi-empirical calculations.
8 A. Fu¨rstner, K. Radkowski, C. Wirtz, R. Goddard, C. W. Lehmann
and R. Mynott, J. Am. Chem. Soc., 2002, 124, 7061.
9 (a) C. W. Lee and R. H. Grubbs, Org. Lett., 2000, 2, 2145; (b)
A. Fu¨rstner, O. R. Thiel, N. Kindler and B. Bartkowska, J. Org. Chem.,
2000, 65, 7990; (c) A. Fu¨rstner, O. R. Thiel and L. Ackermann, Org.
Lett., 2001, 3, 449; (d) A. B. Smith, C. M. Adams and S. A. Kozmin,
J. Am. Chem. Soc., 2001, 123, 990; (e) Z. Xu, C. W. Johannes,
A. F. Houri, D. S. La, D. A. Cogan, G. E. Hofilena and A. H. Hoveyda,
J. Am. Chem. Soc., 1997, 119, 10302.
Notes and references
{ Calculations were carried out using PC Spartan ’02, Wavefunction Inc.
Conformational analyses were performed with an MMFF force field, single
point energies were calculated (HF-3-21G*) for the minimum energy
conformer of each stereoisomer.
10 For an in-depth computational study see: S. F. Vyboishchikov and
W. Thiel, Chem.–Eur. J., 2005, 11, 3921.
§ Physical and spectroscopic data: A compilation of the data of the
metathesis products (E)-17 and (Z)-17 as well as copies of their NMR
spectra can be found in the Supporting Information. Physical and
spectroscopic data of aspercyclide C (1): mp 188–189 uC; [a]23D 5 +229.7u
(c 0.39, MeOH); 1H NMR (400 MHz, CDCl3): d 7.13 (t, J 5 8.0 Hz, 1 H),
7.07 (t, J 5 7.9 Hz, 1 H), 6.98 (dd, J 5 8.1 Hz, J 5 1.6 Hz, 1 H), 6.90 (d,
J 5 7.6 Hz, 1 H), 6.68 (bd, J 5 7.6 Hz, 1 H), 6.65 (d, J 5 8.4 Hz, 1 H), 6.27
(d, J 5 15.9 Hz, 1 H), 5.99 (dd, J 5 15.9 Hz, J 5 9.5 Hz, 1 H), 5.22 (dt,
J 5 9.3 Hz, J 5 2.0 Hz, 1 H), 4.04 (t, J 5 9.3 Hz, 1 H), 2.37 (s, 3 H), 2.07
(m, 1 H), 1.72–1.65 (m, 3 H), 1.55 (m, 2 H), 1.37 (m, 4 H), 0.93 (t, J 5 7.0 Hz,
3 H); 13C NMR (100 MHz, CDCl3): d 167.8, 153.7, 150.0, 141.9, 137.5,
135.4, 132.5, 130.3, 128.1, 126.7, 126.0, 125.0, 121.4, 115.5, 114.7, 77.5, 77.0,
31.6, 31.6, 25.3, 22.5, 19.5, 14.0; IR (film): 3248, 2957, 2924, 2859, 1709,
1588, 1458, 1267, 963, 763; MS (EI) m/z (rel. intensity): 382 ([M+], 1), 282
(50), 264 (29), 254 (22), 253 (100), 236 (30), 211 (10), 135 (19); HR-MS (EI)
calcd.: 405.1675 [(M + Na)+]; found: 405.1672; elemental analysis calcd. for
C23H26O5: C 72.23, H 6.85; found: C 72.18, H 6.73%. For copies of the
NMR spectra of 1, see Supporting Information.{
11 For rings with ¢ 12 atoms, ring closing alkyne metathesis (RCAM)
followed by semi-reduction is a reliable method to exert stereocontrol,
cf.: (a) A. Fu¨rstner and P. W. Davies, Chem. Commun., 2005, 2307; (b)
A. Fu¨rstner and G. Seidel, Angew. Chem., Int. Ed., 1998, 37, 1734; (c)
A. Fu¨rstner and L. Turet, Angew. Chem., Int. Ed., 2005, 44, 3462 and
literature cited therein.
12 Reviews: (a) J. S. Sawyer, Tetrahedron, 2000, 56, 5045; (b) S. V. Ley and
A. W. Thomas, Angew. Chem., Int. Ed., 2003, 42, 5400.
13 N. N. Kulkarni, V. S. Kulkarni, S. R. Lele and B. D. Hosangadi,
Tetrahedron, 1988, 44, 5145.
14 A. Hafner, R. O. Duthaler, R. Marti, G. Rihs, P. Rothe-Streit and
F. Schwarzenbach, J. Am. Chem. Soc., 1992, 114, 2321.
15 For recent applications of the oxy-allylation in natural product synthesis
see: (a) D. Castoldi, L. Caggiano, L. Panigada, O. Sharon, A. M. Costa
and C. Gennari, Angew. Chem., Int. Ed., 2005, 44, 588; (b) J. Cossy,
C. Willis, V. Bellosta and L. Saint-Jalmes, Synthesis, 2002, 951.
16 For an early application of a Duthaler–Hafner reaction in combination
with RCM from our group, see: A. Fu¨rstner and K. Langemann, J. Am.
Chem. Soc., 1997, 119, 9130.
17 T. Mukaiyama, M. Usui, E. Shimada and K. Saigo, Chem. Lett., 1975,
1045.
18 P. Schwab, R. H. Grubbs and J. W. Ziller, J. Am. Chem. Soc., 1996,
118, 100.
19 (a) A. Fu¨rstner, O. R. Thiel, L. Ackermann, H.-J. Schanz and
S. P. Nolan, J. Org. Chem., 2000, 65, 2204; (b) A. Fu¨rstner,
L. Ackermann, B. Gabor, R. Goddard, C. W. Lehmann, R. Mynott,
F. Stelzer and O. R. Thiel, Chem.–Eur. J., 2001, 7, 3236.
20 (a) K. Yamamoto, K. Biswas, C. Gaul and S. J. Danishefsky,
Tetrahedron Lett., 2003, 44, 3297; (b) C. A¨ıssa, R. Riveiros, J. Ragot
and A. Fu¨rstner, J. Am. Chem. Soc., 2003, 125, 15512.
21 For a related example of kinetic control during the formation of a
10-membered ring with the aid of a ‘second generation’ catalyst see
ref. 15a.
22 (a) T. Fukuyama, A. A. Laird and L. M. Hotchkiss, Tetrahedron Lett.,
1985, 26, 6291; (b) M. Petitou, P. Duchaussoy and J. Choay,
Tetrahedron Lett., 1988, 29, 1389.
1 J.-P. Kinet, Annu. Rev. Immunol., 1999, 17, 931.
2 (a) P. Jardieu, Curr. Opin. Immunol., 1995, 7, 779; (b) For the structure
of the human high-affinity IgE receptor see: S. C. Garman, J.-P. Kinet
and T. S. Jardetzky, Annu. Rev. Immunol., 1999, 17, 973.
3 For peptidic antagonists of the high-affinity IgE receptor see:
G. R. Nakamura, M. E. Reynolds, Y. M. Chen, M. A. Starovasnik
and H. B. Lowman, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 1303 and
literature cited therein.
4 S. B. Singh, H. Jayasuriya, D. L. Zink, J. D. Polishook,
A. W. Dombrowski and H. Zweerink, Tetrahedron Lett., 2004, 45,
7605.
5 (a) A. Fu¨rstner and T. Mu¨ller, Synlett, 1997, 1010; (b) A. Fu¨rstner
and K. Langemann, J. Org. Chem., 1996, 61, 8746; (c) A. Fu¨rstner
and O. R. Thiel, J. Org. Chem., 2000, 65, 1738; (d) A. Fu¨rstner and
K. Radkowski, Chem. Commun., 2001, 671; (e) A. Fu¨rstner, O. Guth,
A. Du¨ffels, G. Seidel, M. Liebl, B. Gabor and R. Mynott, Chem.–Eur.
J., 2001, 7, 4811; (f) A. Fu¨rstner and M. Schlede, Adv. Synth. Catal.,
2002, 344, 657.
This journal is ß The Royal Society of Chemistry 2005
Chem. Commun., 2005, 5583–5585 | 5585