Tajima et al.
Organometallics, Vol. 25, No. 1, 2006 231
Scheme 1. Synthesis of 3a,b
reaction of an overcrowded dilithiosilane, Tbt(Dip)SiLi2, with
1,2,4,5-tetrabromobenzene.7c,d Meanwhile, the bis(metallacy-
clopropa)benzenes bis(nickelacyclopropa)benzene (4) and bis-
(zirconacyclopropa)benzene (5) have been prepared and their
crystal structures were reported by Buchwald and Bennett,
respectively.12 Interestingly, 4 and 5 feature not bis(metallacy-
clopropa)benzene character but transition-metal-benzyne com-
plex character, as judged by the results of their X-ray crystal-
lographic analysis.
Here, we describe the synthesis of the first stable bis-
(germacyclopropa)benzenes (3a, cis isomer; 3b, trans isomer),
the heavier congeners of 1 and 2, by the reaction of the
corresponding overcrowded dilithiogermane Tbt(Dip)GeLi2 (8)
with 1,2,4,5-tetrabromobenzene. The structural features of 3a,b
were revealed by X-ray crystallographic analyses along with
theoretical studies on the structures of some model molecules.
The aromaticity of the central benzene rings of 3a,b is also
evaluated on the basis of their structures, NMR studies, and
NICS calculations together with those of related compounds.
Scheme 2. Possible Mechanism for the Formation of 3a,b
Results and Discussion
Synthesis of Bis(germacyclopropa)benzenes 3a,b. Treat-
ment of the diaryldilithiogermane Tbt(Dip)GeLi2 (8), which was
(6) (a) The´taz, C.; Wentrup, C. J. Am. Chem. Soc. 1976, 98, 1258-
1259. (b) Yranzo, G. I.; Elguero, J. Flammang, R.; Wentrup, C. Eur. J.
Org. Chem. 2001, 2209-2220. (c) Torres, M.; Clement, A.; Bertie, J. E.;
Gunning, H. E.; Strausz, O. P. J. Org. Chem. 1978, 43, 2490-2493. (d)
Cadogan, J. I. G.; Sharp, J. T.; Trattles, M. J. J. Chem. Soc., Chem. Commun.
1974, 900-901. (e) Schultz, R.; Schweig, A. Tetrahedron Lett. 1984, 25,
2337-2340. (f) Kaiser, R. I.; Bettinger, H. F. Angew. Chem., Int. Ed. 2002,
41, 2350-2352. (g) Steinfeld, J. I. Spectrochim. Acta 1990, 46A, 589-
596.
(7) (a) Hatano, K.; Tokitoh, N.; Takagi, N.; Nagase, S. J. Am. Chem.
Soc. 2000, 122, 4829-4830. (b) Tokitoh, N.; Hatano, K.; Sasaki, T.;
Sasamori, T.; Takeda, N.; Takagi, N.; Nagase, S. Organometallics 2002,
21, 4309-4311. (c) Tajima, T.; Hatano, K.; Sasaki, T.; Sasamori, T.; Takeda,
N.; Tokitoh, N. Chem. Lett. 2003, 32, 220-221. (d) Tajima, T.; Hatano,
K.; Sasaki, T.; Sasamori, T.; Takeda, N.; Tokitoh, N.; Takagi, N.; Nagase,
S. J. Organomet. Chem. 2003, 686, 118-126.
(8) (a) Tokitoh, N.; Hatano, K.; Sadahiro, T.; Okazaki, R. Chem. Lett.
1999, 931-932. (b) Tokitoh, N.; Sadahiro, T.; Hatano, K.; Sasaki, T.;
Takeda, N.; Okazaki, R. Chem. Lett. 2002, 34-35.
(9) (a) Sekiguchi, A.; Ichinohe, M.; Yamaguchi, S. J. Am. Chem. Soc.
1999, 121, 10231-10232. (b) Ichinohe, M.; Arai, Y.; Sekiguchi, A.; Takagi,
N.; Nagase, S. Organometallics 2001, 20, 4141-4143. (c) Sekiguchi, A.;
Izumi, R.; Ihara, S.; Ichinohe, M.; Lee, V. Y. Angew. Chem., Int. Ed. 2002,
41, 1598-1600. (d) Sekiguchi, A.; Izumi, R.; Lee, V. Y.; Ichinohe, M. J.
Am. Chem. Soc. 2002, 124, 14822-14823. (e) Sekiguchi, A.; Izumi, R.;
Lee, V. Y.; Ichinohe, M. Organometallics 2003, 22, 1483-1486. (f) Nakata,
N.; Izumi, R.; Lee, V. Y.; Ichinohe, M.; Sekiguchi, A. J. Am. Chem. Soc.
2004, 126, 5058-5059. (g) Sekiguchi, A.; Inoue, S.; Ichinohe, M.; Arai,
Y. J. Am. Chem. Soc. 2004, 126, 9626-9629. (h) Nakata, N.; Izumi, R.;
Lee, V. Y.; Ichinohe, M.; Sekiguchi, A. Chem. Lett. 2005, 34, 582-583.
(10) (a) Mehrotra, S. K.; Kawa, H.; Baran, J. R., Jr.; Ludvig, M. M.;
Lagow, R. J. J. Am. Chem. Soc. 1990, 112, 9003-9004. (b) Baran, J. R.,
Jr.; Isom, H. S.; Lagow, R. J. Inorg. Chem. Commun. 1998, 1, 222-224.
(c) Kira, M.; Iwamoto, T.; Yin, D.; Maruyama, T.; Sakurai, H. Chem. Lett.
2001, 910-911. (d) Bravo-Zhivotovskii, D.; Ruderfer, I.; Melamed, S.;
Botoshansky, M.; Tumanskii, B.; Apeloig, Y. Angew. Chem., Int. Ed. 2005,
44, 739-1600. For other dimetalated germanes, see: (e) Mochida, K.;
Tatsushige, N.; Hamashima, M. Bull. Chem. Soc. Jpn. 1985, 58, 1443-
1447. (f) Bravo-Zhivotovskii, D. A.; Pigarev, S. D.; Vyazankina, O. A.;
Vyazanskin, N. S. Zh. Obshch. Khim. 1987, 57, 2644-2645. (g) Castel,
A.; Rivie´re, P.; Satge´, J.; Ko, Y.-H. J. Organomet. Chem. 1988, 342, C1-
C4. (h) Castel, A.; Rivie´re, P.; Satge´, J.; Ko, H. Y. J. Organometallics
1990, 9, 205-210. (i) Castel, A.; Rivie´re, P.; Satge´, J.; Desor, D. J.
Organomet. Chem. 1992, 433, 49-61.
generated by the exhaustive reduction of Tbt(Dip)GeBr2 (7) with
an excess amount of lithium naphthalenide (THF solution, 5
mol equiv) at -78 °C in THF, with 0.6 equiv of 1,2,4,5-
tetrabromobenzene at -40 °C gave the bis(germacyclopropa)-
benzenes 3a (cis isomer) and 3b (trans isomer) as colorless
crystals in 13 and 7% yields, respectively (Scheme 1). Although
bis(germacyclopropa)benzenes 3a,b were stable enough to be
handled in the open air and/or in hydrocarbon solvents such as
hexane and benzene, they underwent decomposition in halo-
genated solvents such as CHCl3 or on treatment with silica gel.13
The formation of bis(germacyclopropa)benzenes 3a,b can be
explained by a reaction mechanism similar to that for the
previously reported metallacyclopropabenzenes 6b,c.7 At first,
dilithiogermane 8 reacts with 1,2,4,5-tetrabromobenzene to give
Tbt(Dip)GeBrLi (10)7b and 1,2,4-tribromo-5-lithiobenzene via
a Li-Br exchange reaction. Then, the intermediary 4,5-
dibromobenzyne, which should be generated by the elimination
of LiBr from 1,2,4-tribromo-5-lithiobenzene, may react with
germylenoid 107b to afford the o-germylated phenyllithium 11.
The intramolecular cyclization of 11 followed by a subsequent
similar condensation at the 3,4-positions of the resulting 3,4-
dibromo-1-germacyclopropabenzene gives 3a,b (Scheme 2). In
addition, Tbt(Dip)GeBr2 (7; 12%) and Tbt(Dip)GeH2 (9; 4%)
were obtained as other reaction products in this reaction.
Dibromogermane 7 was most likely obtained by the competing
Li-Br exchange reaction of Tbt(Dip)GeBrLi (10) with 1,2,4,5-
tetrabromobenzene.7b Tbt(Dip)GeH2 (9) was probably generated
by the protonation of 8. The formation of bis(germacyclopropa)-
benzenes 3a,b should be interpreted in terms of the concurrent
generation of different reactive species such as the germylenoid
10 and benzyne species in the reaction under the mild conditions.
Molecular Structures of 3a,b in the Solid State. The
molecular structures of 3a,b were definitively determined by
X-ray crystallographic analysis at -170 °C (Figures 1 and 2).
The selected bond lengths and angles of 3a,b are listed in Table
1, together with the optimized structural parameters of model
(11) (a) Tajima, T.; Sasaki, T.; Sasamori, T.; Takeda, N.; Tokitoh, N.
Chem. Commun. 2004, 402-403. (b) Tajima, T.; Sasaki, T.; Sasamori, T.;
Takeda, N.; Tokitoh, N. Appl. Organomet. Chem. 2005. 19, 570-577. (c)
Sasamori, T.; Sasaki, T.; Takeda, N.; Tokitoh, N. Organometallics 2005,
24, 612-618.
molecules 3c-e (3c, R1-4 ) H; 3d, R1-4 ) Me; 3e, R1-4
)
(12) (a) Bennett, M. A.; Grage, J. S.; Griffiths, K. D.; Roberts, N. K.;
Robertson, G. B.; Wickramasinghe, W. A. Angew. Chem., Int. Ed. Engl.
1988, 27, 941-942. (b) Buchwald, S. L.; Lucas, E. A.; Dewan. J. C. J.
Am. Chem. Soc. 1987, 109, 4396-4397.
(13) The bis(silacyclopropa)benzenes 2a,b were surprisingly stable as
compared with 3a,b. Compounds 2a,b can be purified by preparative thin-
layer chromatography on silica gel without any decomposition.7c,d