8914
A. Roy, S. W. Schneller / Tetrahedron Letters 46 (2005) 8913–8915
AcO
OH
F3C
HO
OH
F3C
HO
OTBDPS
O
O
a
c
b
O
O
O
O
O
O
45
6
5
7
d
NH2
N
N
N
N
F3C
O
F3C
F3C
g
e
f
3
OH
O
O
O
O
O
O
10
9
8
Scheme 1. Reagents and conditions: (a) (i) TBDPSCl, imidazole, DMF, rt, 95%; (ii) OsO4, NMO, THF–H2O, acetone (8:1:1), rt, 90%; (iii)
Me2C(OMe)2, acetone, H+, rt, 94%; (iv) satd NH3 in MeOH, 100 °C, 92%; (v) PCC, CH2Cl2, rt, 90%; (b) (i) CF3SiMe3, TBAF (cat), THF, 0 °C; (ii)
TBAF, rt, 81% for two steps; (c) DMSO, CH2Cl2, EDC, HCl, pyridinium trifluoroacetate, 10 °C then rt for 36 h: 40% for 7, 36% for 8; for 6 days
with 8 equiv of oxidizing agent, only 8 (80%); (d) MsCl, Et3N, CH2Cl2, rt, 50%; (e) NaBH4, CeCl3Æ7H2O, MeOH, 0 °C, 78%; (f) (i) PPh3, DIAD,
6-chloropurine; (ii) satd NH3 in MeOH, 68% for two steps; (g) Dowex H+, MeOH, H2O(19:1), 90 °C, 80%. EDC = N-(3-dimethylaminopropyl)-
N0-ethylcarbodiimide.
Reduction of the trifluoromethyl enone 8 with sodium
borohydride in methanol (using the Luche method)
yielded the alcohol 9. Mitsunobu reaction of 9 with
6-chloropurine followed by ammonolysis provided
10. Acidic deprotection of 10 furnished the target 3.12
ysis of 3 is underway and will be presented in a full paper
on this nucleoside derivative.
Acknowledgments
A proposed pathway to 8 from 6 is presented in Scheme
2 and follows from the initial oxidation to the key inter-
mediate 7 and calls upon the work of Moffatt and his
collaborators13 to evoke the N-(3-dimethylaminoprop-
yl)-N0-ethylcarbodiimide hydrochloride (EDC)-DMSO
adduct (11). The transformation of 13 into 8 would be
favored by a six-membered transition state.
This research was supported by funds from the NIH (AI
56540).
References and notes
1. Chiang, P. K. Pharmacol. Ther. 1998, 77, 115–135.
2. (a) Schneller, S. W. Curr. Top. Med. Chem. 2002, 2, 1087–
1092; (b) Rodriguez, J. B.; Comin, M. J. Mini-Rev. Med.
Chem. 2003, 3, 95–114.
3. (a) Shuto, S.; Obara, T.; Toriya, M.; Hosoya, M.; Snoeck,
R.; Andrei, G.; Balzarini, J.; De Clercq, E. J. Med. Chem.
1992, 35, 324–331; (b) Jarvi, E. T.; McCarthy, J. R.;
Mehdi, S.; Matthews, D. P.; Edwards, M. L.; Prakash, N.
J.; Bowlin, T. L.; Dunkara, P. S.; Bey, P. J. Med. Chem.
1991, 34, 647–656; (c) Matthews, D. P.; Edwards, M. L.;
Mehdi, S.; Koehl, J. R.; Wolos, J. A.; McCarthy, J. R.
Bioorg. Med. Chem. Lett. 1993, 3, 165–168.
4. (a) De Clercq, E. Antimicrob. Agents Chemother. 1985, 28,
84–89; (b) Bray, M.; Raymond, J. L.; Geisbert, T.; Baker,
R. O. Antiviral Res. 2002, 55, 151–159.
5. Seley, K. L.; Schneller, S. W.; Korba, B. J. Med. Chem.
1998, 41, 2168–2170.
In conclusion, a highly efficient synthetic route to 50-
deoxy-50,50,50-trifluoro neplanocin
A 3 has been
described via a key intermediate 8. The biological anal-
H+
H+
F3C
R
RHN
Me
C
O
S
N
Et
O
N
C N Et
HO
O
Me
O
O
S
Me Me
7
11
6. Ruppert, I.; Schilich, K.; Volbach, W. Tetrahedron Lett.
1984, 25, 2195–2198.
H
7. Mloston, G.; Prakash, G. K. S.; Olah, G. A.; Heimgart-
ner, H. Helv. Chim. Acta 2002, 85, 1644–1658.
8. For example, (a) Yang, M.; Zhou, J.; Schneller, S. W.
Tetrahedron Lett. 2004, 45, 8981–8982; (b) Yang, M.; Ye,
W.; Schneller, S. W. J. Org. Chem. 2004, 69, 3993–
3996.
F3C
F3C
H2C
Me
O
Me
Me
8
-H+
O
S
S
O
O
O
O
O
O
9. Hua, D. H.; Venkataraman, S. Tetrahedron Lett. 1985, 26,
3765–3768.
13
12
R=(CH2)3NMe2
10. Johnson, C. R.; Penning, T. D. J. Am. Chem. Soc. 1988,
110, 4726–4735.
Scheme 2.