Published on Web 10/20/2004
Site-Isolation Effects in a Dendritic Nickel Catalyst for the
Oligomerization of Ethylene
Christian Mu¨ller, Lily J. Ackerman, Joost N. H. Reek,* Paul C. J. Kamer, and
Piet W. N. M. van Leeuwen*
Contribution from the Van’t Hoff Institute for Molecular Sciences, Nieuwe Achtergracht 166,
1018 WV Amsterdam, The Netherlands
Received May 26, 2004; E-mail: reek@science.uva.nl
Abstract: Dendrimers, specifically suited to construct site-isolated groups due to their well-defined
hyperbranched structure, have been used as a ligand design element for the construction of nickel catalysts
for ethylene oligomerization. The dendritic P,O ligand indeed suppresses the formation of inactive bis-
(P,O)Ni complexes in toluene, as is evident from NMR studies, and, as a consequence, outperforms the
parent ligand in catalysis in this solvent. The dendritic effect observed in methanol is more subtle because
both the dendritic ligand 1 and the parent 2 form bis(P,O)nickel complexes in solution according to NMR
spectroscopy. Unlike the parent complex 8, the dendritic bis(P,O)Ni complex 7 derived from dendrimer
ligand 1 is able to dissociate to a mono-ligated species under catalytic conditions, that is, 40 bar ethylene
and 80 °C, which can enter the catalytic cycle. Indeed, dendritic ligand 1 gives much more active nickel
catalysts for the oligomerization in methanol than does 2.
Introduction
examples of dendritic effects on catalyst properties have been
reported in the literature.3,6 Here, we report on a new nickel
Careful positioning of the functional groups in a polymeric
protein framework optimizes biological functions of natural
systems. This concept of optimization by site-isolation can also
be applied to artificial systems and has been utilized for various
applications including catalysis.1 Dendrimers2 are specifically
suited to construct site-isolated functional groups due to their
well-defined hyperbranched structure,3 and site-isolation effects
have been explored by encapsulation of various functional
groups including photoactive4 and catalytic functions.5,6 The
distinct environment around the metal center created by a
dendritic scaffold can in principle lead to properties that differ
significantly from the parent compounds. So far, only a few
catalyst system for the oligomerization of ethylene7 in which
the catalyst-embedding by a dendrimer has been used as a design
element. This important industrial reaction (Shell Higher Olefins
Process) is catalyzed by nickel complexes bearing bidentate P,O
ligands, such as o-diphenylphosphinophenols.8 However, the
formation of bis(P,O)nickel complexes can, especially in polar
solvents, retard the reaction, as it is a pathway for catalyst
deactivation.9 We anticipated that the embedding of such a
(P,O)Ni catalyst in a dendritic framework, such as 1, would
reduce dimerization and therefore enhance the productivity of
the catalyst (Figure 1).
(1) Grubbs, R. H.; Gibbons, C.; Kroll, L. C.; Bonds, W. D., Jr.; Brubaker, C.
H., Jr. J. Am. Chem. Soc. 1973, 95, 2373-2375.
(6) (a) Gitsov, I.; Ivanova, P. T.; Fre´chet, J. M. J. Macromol. Rapid Commun.
1994, 15, 387. (b) Oosterom, G. E.; van Haaren, R. J.; Reek, J. N. H.;
Kamer, P. C. J.; van Leeuwen, P. W. N. M. Chem. Commun. 1999, 1119.
(c) Chow, H.-F.; Mak, C. C. J. Org. Chem. 1997, 62, 5116. (d) Bhyrappa,
P.; Young, J. K.; Moore, J. S.; Suslick, K. S. J. Am. Chem. Soc. 1996,
118, 5708. (e) Bolm, C.; Derrien, N.; Seger, A. Synlett 1996, 387. (f)
Rheiner, P. B.; Sellner, H.; Seebach, D. HelV. Chim. Acta 1997, 80, 2027.
(g) Rheiner, P. B.; Seebach, D. Chem.-Eur. J. 1999, 5, 3221. (h) Oosterom,
G. E.; Steffens, S.; Reek, J. N. H.; Kamer, P. C. J.; van Leeuwen, P. W.
N. M. Top. Catal. 2002, 19, 61-73.
(2) (a) Tomalia, D. A.; Naylor, A. M.; Goddard. W. A. Angew. Chem., Int.
Ed. Engl. 1990, 29, 138. (b) Newkome, G. R.; Moorefield, C. N.; Vo¨gtle,
F. Dendritic Molecules; Verlag-Chemie: Weinheim, Germany, 1996. (c)
Bosman, A. W.; Janssen, H. M.; Meijer, E. W. Chem. ReV. 1999, 99, 1665.
(d) Majoral, J.-P.; Caminade, A.-M. Chem. ReV. 1999, 99, 845.
(3) (a) Hecht, S.; Fre´chet, J. M. J. Angew. Chem., Int. Ed. 2001, 40, 74-91.
(b) Hecht, S. J. Polym. Sci., Polym. Chem. 2003, 41, 1047-1058.
(4) (a) Lee, L. F.; Adronov, A.; Schaller, R. D.; Fre´chet, J. M. J.; Saykally, R.
J. J. Am. Chem. Soc. 2003, 125, 536-540. (b) Harth, E. M.; Hecht, S.;
Helms, B.; Malmstrom, E. E.; Fre´chet, J. M. J.; Hawker, C. J. J. Am. Chem.
Soc. 2002, 124, 3926-3938. (c) Jiang, D. L.; Aida, T. Nature 1997, 388,
454-456. (d) Freenman, A. W.; Koene, S. C.; Malenfant, P. R. L.;
Thompson, M. E.; Fre´chet, J. M. J. J. Am. Chem. Soc. 2000, 122, 12385-
12386.
(7) (a) Keim, W. J. Mol. Catal. 1989, 52, 19. (b) Keim, W. Angew. Chem.,
Int. Ed. Engl. 1990, 29, 235-244. (c) Keim, W. New J. Chem. 1994, 18,
93. (d) Skupinska, J. Chem. ReV. 1991, 91, 613-648. (e) Vogt, D. In
Applied Homogeneous Catalysis with Organometallic Compounds; Cornils,
B., Herrmann, W. A., Eds.; VCH: New York, 1996; Vol. 1, pp 245-258.
(f) Britovsek, G. J. P.; Mastroianni, S.; Solan, G. A.; Baugh, S. P. D.;
Redshaw, C.; Gibson, V. S.; White, A. J. P.; Williams, D. J.; Elsegood,
M. R. J. Chem.-Eur. J. 2000, 6, 2221-2231. (g) Mecking, S. Coord. Chem.
ReV. 2000, 203, 325-351. (h) Mecking, S.; Held, A.; Bauers, F. M. Angew.
Chem., Int. Ed. 2002, 41, 544-561.
(5) (a) Oosterom, G. E.; Reek, J. N. H.; Kamer, P. C. J.; van Leeuwen, P. W.
N. M. Angew. Chem., Int. Ed. 2001, 40, 1828-1849. (b) Kreiter, R.; Kleij,
A. W.; Klein Gebbink, R. J. M.; van Koten, G. In Dendrimers IV: Metal
Coordination, Self-Assembly, Catalysis; Vo¨gtle, F., Schalley, C. A., Eds.;
Springer-Verlag: Berlin, 2001; Vol. 217, p 163. (c) Astruc, D.; Chardac,
F. Chem. ReV. 2001, 101, 2991. (d) Crooks, R. M.; Zhao, M.; Sun, L.;
Chechik, V.; Yueng, L. K. Acc. Chem. Res. 2001, 34, 181. (e) Twyman,
L. J.; King, A. S. H.; Martin, I. K. Chem. Soc. ReV. 2002, 31, 69. (f) van
Heerbeek, R.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Reek, J. N. H.
Chem. ReV. 2002, 102, 3717-3756.
(8) Rauchfuss, B. Inorg. Chem. 1977, 16, 2966.
(9) (a) Heinicke, J.; Koesling, M.; Bru¨ll, R.; Keim, W.; Pritzkow, H. Eur. J.
Inorg. Chem. 2000, 299-305. (b) Related work: Conner, E. F.; Younkin,
T. R.; Henderson, J. I.; Waltman, A. W.; Grubbs, R. H. Chem. Commun.
2003, 2272-2273.
9
14960
J. AM. CHEM. SOC. 2004, 126, 14960-14963
10.1021/ja046901f CCC: $27.50 © 2004 American Chemical Society