COMMUNICATIONS
Jung, Tetrahedron Lett. 1989, 30, 6636 ± 6640; e) D. A. Evans, E. B.
Sjogren, A. E. Weber, R. E. Conn, Tetrahedron Lett. 1987, 28, 39 ± 43.
For an earlier approach to the hydroxyleucine synthon developed in
our laboratories, see J. S. Panek, C. E. Masse, J. Org. Chem. 1998, 63,
2382 ± 2384.
tion. The critical anti-selective crotylation reaction was then
carried out to establish the relative configuration at the C6
and C7 centers. This double stereodifferentiating[13] reaction
was readily accomplished with TiCl4 to afford homoallylic
alcohol 11 with high levels of diastereoselectivity (anti:syn
>30:1) and in 50 ± 60% yield. This anti-bond construction was
presumably achieved through simultaneous coordination of
the aldehyde oxygen atom and the nitrogen atom in the
oxazoline ring. The 1,3-relationship of the heteroatoms ideally
predisposes the more Lewis basic nitrogen atom relative to
the aldehyde carbonyl group to generate a 5-membered
chelate with TiCl4 via the illustrated synclinal transition state
(Scheme 3).[14] Oxidative cleavage of (E)-olefin 11 under
standard ozonolysis conditions and subsequent oxidation with
sodium chlorite[15] furnished carboxylic acid 3.
The completion of ()-lactacystin was initiated by catalytic
transfer hydrogenation of the oxazoline moiety with Pd-black
to give the g-lactam methyl ester after cyclization. Saponifi-
cation of the methyl ester under mild conditions afforded the
dihydroxy acid, which was directly converted into b-lactone 2
by treatment with bis(2-oxo-3-oxazolidinyl)phosphinic chlor-
ide (BOPCl). We employed the lactone opening strategy
developed by Corey et al. to attach the N-acetyl-l-cysteine
side chain.[5b] Treatment of 2 with N-acetyl-l-cysteine/Et3N
furnished synthetic ()-1 identical in all respects to the
natural product (1H and 13C NMR, IR spectroscopies, HR-
MS, optical rotation, and TLC).[5b]
[8] B. Tao, G. Schlingloff, K. B. Sharpless, Tetrahedron Lett. 1998, 39,
2507 ± 2510; G. Li, H. H. Angert, K. B. Sharpless, Angew. Chem. 1996,
108, 2995 ± 2999; Angew. Chem. Int. Ed. Engl. 1996, 35, 2837 ± 2841.
See also P. OꢁBrien, Angew. Chem. 1999, 111, 339 ± 342; Angew. Chem.
Int. Ed. 1999, 38, 326 ± 329.
[9] D. Seebach, E. Hungerbühler, R. Naef, P. Schnurrenberger, B.
Weidmann, M. Züger, Synthesis 1982, 138 ± 141.
[10] R. A. Moss, T. B. K. Lee, J. Chem Soc. Perkin Trans. 1 1973, 2778 ±
2781.
[11] D. Seebach, J. D. Aebi, Tetrahedron Lett. 1983, 24, 3311 ± 3314.
[12] K. E. Pfitzner, J. G. Moffatt, J. Am. Chem. Soc. 1965, 87, 5661 ± 5669.
[13] S. Masamune, W. Choy, J. S. Peterson, L. R. Sita, Angew. Chem. 1985,
97, 1 ± 31; Angew. Chem. Int. Ed. Engl. 1985, 24, 1 ± 30.
[14] For similar bond constructions of the silane reagents with oxazoles, see
P. Liu, J. S. Panek, Tetrahedron Lett. 1998, 39, 6143 ± 6146.
[15] E. J. Corey, A. G. Myers, J. Am. Chem Soc. 1985, 107, 5574 ± 5576.
Aerobic Oxidation of Primary Alcohols by a
New Mononuclear CuII-Radical Catalyst**
Phalguni Chaudhuri,* Martina Hess,
Thomas Weyhermüller, and Karl Wieghardt*
Received: October 20, 1998 [Z12551]
Recently we reported[1] a dinuclear CuII-phenoxyl radical
complex, which catalyzes efficiently the aerobic oxidation of
primary and secondary alcohols to the corresponding alde-
hydes and ketones or to 1,2-glycols by oxidative C ± C
coupling with concomitant formation of H2O2. This complex
together with that of Stack et al.[2] are the first reported
functional models for the enzyme galactose oxidase (GO).[3]
We report here a new mononuclear CuII-iminosemiquinone
catalyst that selectively transforms primary alcohols (e.g.
ethanol but not methanol) with O2 to aldehydes and H2O2;
secondary alcohols are not at all substrates for the catalyst.
The trifluoroacetate salt of the cation N,N-bis(2-hydroxy-
3,5-di-tert-butylphenyl)ammonium [H4(L3)](CF3CO2) was
prepared through the condensation of 3,5-di-tert-butylcate-
chol with NH3 in n-heptane and subsequent acidification with
trifluoroacetic acid. It is known[4] that the diamagnetic
trianion (L3)3 (Scheme 1), present as a tridentate ligand in
complexes, can be easily oxidized to the radical dianion (L2)2
and then to the diamagnetic monoanion (L1)1 in two
successive one-electron oxidation steps. Speier and Pierpont
et al. have, for example, described the complexes [CuII(L1)2]
German version: Angew. chem. 1999, 111, 1161 ± 1163
Keywords: asymmetric synthesis
´ enzyme inhibitors ´
lactacystin ´ lactones ´ total synthesis
[1] a) S. Omura, T. Fujimoto, K. Otoguro, K. Matsuzaki, R. Moriguchi, H.
Tanaka, Y. Sasaki, J. Antibiot. 1991, 44, 113 ± 116. b) S. Omura, K.
Matsuzaki, T. Fujimoto, K. Kosuge, T. Furuya, S. Fujita, A. Nakagawa,
J. Antibiot. 1991, 44, 117 ± 118.
[2] E. M. Conner, S. Brand, J. M. Davis, F. S. Laroux, V. J. Palombella,
J. W. Fuseler, D. Y. Kang, R. E. Wolf, M. B. Grisham, J. Pharm. Exp.
Therap. 1997, 282, 1615 ± 1622.
[3] a) G. Fenteany, R. F. Standaert, W. S. Lane, S. Choi, E. J. Corey, S. L.
Schreiber, Science 1995, 268, 726 ± 731. b) L. R. Dick, A. A. Cruik-
shank, L. Grenier, F. D. Melandri, S. L. Nunes, R. L. Stein, J. Biol.
Chem. 1996, 271, 7273 ± 7275. c) J. A. Adams, R. Stein, Ann. Rep. Med.
Chem. 1996, 31, 279 ± 288.
[4] M. Groll, L. Ditzel, J. Löwe, D. Stock, M. Bochtler, H. D. Bartunik, R.
Huber, Nature 1997, 386, 463 ± 471.
[5] a) E. J. Corey, G. A. Reichard, J. Am. Chem. Soc. 1992, 114, 10677 ±
10678; b) E. J. Corey, W. Li, G. A. Reichard, J. Am. Chem. Soc. 1998,
120, 2330 ± 2336; c) E. J. Corey, W. Li, T. Nagamitsu, Angew. Chem.
1998, 110, 1784 ± 1787; Angew. Chem. Int. Ed. 1998, 37, 1676 ± 1679;
d) H. Uno, J. E. Baldwin, A. T. Russell, J. Am. Chem. Soc. 1994, 116,
2139 ± 2140; e) T. Nagamitsu, T. Sunazuka, S. Omura, P. A. Sprengler,
A. B. Smith III, J. Am. Chem. Soc. 1996, 118, 3584 ± 3590; f) N. Chida,
J. Takeoka, N. Tsutsumi, S. Ogawa, J. Chem. Soc. Chem. Commun.
1995, 793 ± 794. See also E. J. Corey, S. Choi, Tetrahedron Lett. 1993,
34, 6969 ± 6972; E. J. Corey, W. Z. Li, Tetrahedron Lett. 1998, 39,
7475 ± 7478.
[6] C. E. Masse, J. S. Panek, Chem. Rev. 1995, 95, 1293 ± 1316.
[7] a) T. Sunazuka, T. Nagamitsu, H. Tanaka, S. Omura, P. A. Sprengler,
A. B. Smith III, Tetrahedron Lett. 1993, 34, 4447 ± 4448; b) E. J. Corey,
D.-H. Lee, S. Choi, Tetrahedron Lett. 1992, 33, 6735 ± 6738; c) C. G.
Caldwell, S. S. Bundy, Synthesis 1990, 34 ± 36; d) M. E. Jung, Y. H.
[*] Priv.-Doz. Dr. P. Chaudhuri, Prof. Dr. K. Wieghardt, M. Hess,
Dr. T. Weyhermüller
Max-Planck-Institut für Strahlenchemie
Stiftstrasse 34 ± 36, D-45470 Mülheim an der Ruhr (Germany)
Fax: (49)208 ± 306 ± 3952
[**] This work was supported by the Degussa AG, Frankfurt, and the
Fonds der Chemischen Industrie.
Angew. Chem. Int. Ed. 1999, 38, No. 8
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1999
1433-7851/99/3808-1095 $ 17.50+.50/0
1095