K. Nagasawa et al. / Tetrahedron Letters 43 (2002) 6383–6385
6385
steps). In this cycloaddition, 1-undecene (18)
approached 17 from the less-hindered side (b-face) in
the exo-mode, and the newly generated stereochemistry
of 19 at C6 and C8 was satisfactorily controlled.10,13
After protection of the hydroxyl group of 19 with Ac2O
in pyridine, the NꢀO bond was reduced with hydrogen
in the presence of 10% Pd/C to give the trans-2,5-disub-
stituted-b-hydroxypyrrolidine 20 in 98% yield. Treat-
ment of 20 with bis-Cbz-2-methyl-2-thiopseudourea
(21) in the presence of mercury (II) chloride14 generated
the guanylated pyrrolidine 22 in 51% yield. Treatment
of 22 under the Mitsunobu reaction conditions15
effected cyclization with inversion of the stereochem-
istry at C8 to give the bicyclic guanidine 23 in 58%
yield. Deprotection of one of the Cbz groups and the
acetyl group of 23 took place simultaneously with
sodium hydride in MeOH–THF (1:1)16 to give 24 in
80% yield. The tricyclic guanidine was formed on treat-
ment of 24 with methanesulfonyl chloride in the pres-
ence of triethylamine to give 25 in 82% yield.
Deprotection of the TBS ether of 25 and oxidation of
the resulting primary alcohol were simultaneously car-
ried out with Jones reagent to give the carboxylic acid,
which was treated with trimethylsilyldiazomethane to
give the methyl ester 26 in 47% yield. Finally, deprotec-
tion of the Cbz group was accomplished with hydrogen
over 10% Pd/C to give 4 in 85% yield. The spectral data
of 4 (1H, 13C NMR in CD3OD, and high-resolution
mass spectrum)17 were consistent with the data reported
by Overman.7a
Faulkner, D. J.; Carte, B.; Breen, A. L.; Hertzberg, R. P.;
Johnson, R. K.; Westley, J. W.; Potts, B. C. M. J. Org.
Chem. 1995, 60, 1182.
2. Patil, A. D.; Freyer, A. J.; Taylor, P. B.; Carte, B.; Zuber,
G.; Johnson, R. K.; Faulkner, D. J. J. Org. Chem. 1997,
62, 1814.
3. Rao, A. V. R.; Gurjar, M. K.; Vasudevan, J. J. Chem.
Soc. Chem. Commun. 1995, 1369.
4. Louwrier, S.; Ostendorf, M.; Tuynman, A.; Hiemstra, H.
Tetrahedron Lett. 1996, 37, 905.
5. (a) Snider, B. B.; Chen, J.; Patil, A. D.; Freyer, A. J.
Tetrahedron Lett. 1996, 37, 6977; (b) Snider, B. B.; Chen,
J. Tetrahedron Lett. 1998, 39, 5697.
6. (a) Black, G. P.; Murphy, P. J.; Walshe, N. D. A.; Hibbs,
D. E.; Hursthouse, M. B.; Malik, K. M. A. Tetrahedron
Lett. 1996, 37, 6943; (b) Black, G. P.; Murphy, P. J.;
Walshe, N. D. A. Tetrahedron 1998, 54, 9481; (c) Black,
G. P.; Murphy, P. J.; Thornhill, A. J.; Walshe, N. D. A.;
Zanetti, C. Tetrahedron 1999, 55, 6547.
7. (a) Franklin, A. S.; Ly, S. K.; Mackin, G. H.; Overman,
L. E.; Shaka, A. J. J. Org. Chem. 1999, 64, 1512; (b)
McDonald, A. I.; Overman, L. E. J. Org. Chem. 1999, 64,
1520; (c) Cohen, F.; Overman, L. E.; Sakata, S. K. L.
Org. Lett. 1999, 1, 2169; (d) Cohen, F.; Overman, L. E.
J. Am. Chem. Soc. 2001, 123, 10782.
8. Duron, S. G.; Gin, D. Y. Org. Lett. 2001, 3, 1551.
9. Evans, P. A.; Manangan, T. Tetrahedron Lett. 2001, 42,
6637.
10. Nagasawa, K.; Koshino, H.; Nakata, T. Tetrahedron
Lett. 2001, 42, 4155.
11. Ali, S.k. A.; Khan, J. H.; Wazeer, M. I. M.; Perzanowski,
H. P. Tetrahedron 1989, 45, 5979.
In conclusion, we have succeeded in the stereoselective
synthesis of the tricyclic guanidine 4, the key compo-
nent of batzelladines, based on successive 1,3-dipolar
cycloadditions and successive cyclizations for the con-
struction of tricyclic guanidine ring. This method
should be applicable to various types of tricyclic
guanidine class compounds. Efforts towards the synthe-
sis of batzelladines A (1) D (2) and F (3) are in progress
in our laboratories.
12. (a) Tufariello, J. J.; Mullen, G. B.; Tegeler, J. J.; Trybul-
ski, E. J.; Wong, S. C.; Ali, S.k. A. J. Am. Chem. Soc.
1979, 101, 2435; (b) Tufariello, J. J.; Puglis, J. M. Tetra-
hedron Lett. 1986, 27, 1489; (c) Ali, S.k. A.; Wazeer, M.
I. M. Tetrahedron Lett. 1993, 34, 137.
13. Nagasawa, K.; Georgieva, A.; Koshino, H.; Nakata, T.;
Kita, T.; Hashimoto, Y. Org. Lett. 2002, 4, 177.
14. (a) Kim, K. S.; Qian, L. Tetrahedron Lett. 1993, 34, 7677;
(b) Iwanowicz, E. J.; Poss, M. A.; Lin, J. Syn. Commun.
1993, 23, 1443.
Acknowledgements
15. Dodd, D. S.; Kozikowski, A. P. Tetrahedron Lett. 1994,
35, 977.
K.N. thanks Toray Co., Ltd. for an Award in Synthetic
Organic Chemistry, Japan and the Pharmacy Research
Encouragement Foundation for their financial support.
This research was also supported in part by a Grant-in-
Aid from the Ministry of Education, Culture, Sports,
Science and Technology of Japan.
16. McAlpine, I. J.; Armstrong, R. W. Tetrahedron Lett.
2000, 41, 1849.
1
17. Spectral data for 4: H NMR (CD3OD, 400 MHz) l 3.94
(m, 1H), 3.83 (m, 1H), 3.72 (s, 3H), 3.54 (m, 2H), 3.15 (t,
J=3.4 Hz, 1H), 2.35 (ddd, J=12.2, 4.0, 2.1 Hz, 1H), 2.21
(m, 2H), 1.50–1.64 (m, 4H), 1.29 (brs, 14H), 1.25 (d,
J=6.3 Hz, 3H), 0.89 (t, J=6.4 Hz, 3H); 13C NMR
(CD3OD, 100 MHz) 171.0, 151.5, 57.8, 57.3, 53.2, 49.9,
45.4, 37.0, 34.3, 33.0, 31.4, 30.6 (2 carbons), 30.4, 29.3,
26.2, 23.7, 18.4, 14.4 ppm; HRMS (FAB, MH+) calcd for
C21H38N3O2: 364.2964, found: 364.2963.
References
1. Patil, A. D.; Kumar, N. V.; Kokke, W. C.; Bean, M. F.;
Freyer, A. J.; DeBrosse, C.; Mai, S.; Truneh, A.;