C O M M U N I C A T I O N S
Scheme 2
In summary, our experimental and theoretical results demonstrate
that, for these systems, the Pd-catalyzed arylation does not involve
an electrophilic aromatic substitution reaction. A mechanism for
the Pd-catalyzed arylation involving a proton abstraction by a
carbonate, or related ligand, provides a satisfactory explanation for
the experimental data.
Acknowledgment. This work was supported by the MEC
(CTQ2004-02869 to A.M.E. and BQU2002-04110-C02-02 to F.M.)
and the ICIQ Foundation. We thank Prof. Timothy Gallagher for
helpful comments and exchange of information, E. Gonza´lez-
Cantalapiedra for the synthesis of 5H-indeno[1,2-b]pyridine, and
Johnson Matthey PLC for palladium salts.
seldom considered in arylation processes, with the notable exception
of a recent computational work by Dedieu and co-workers, where
a proton transfer assisted by a palladium center was shown to be
the key step for a vinyl to aryl shift.12
Supporting Information Available: Experimental details, char-
acterization data, computational details, Cartesian coordinates, Mulliken
charges, and absolute energies. This material is available free of charge
We carried out a computational DFT study with the B3LYP
method on the mechanism of the reaction.13a Such studies have
been shown recently to provide useful insights into the mechanistic
features of cross-coupling reactions.2c,12,15 Our first set of calcula-
tions was carried out on a [Pd(PH3)Br(o-(CH2-Ph)Ph)] system, a
model of the experimental system where hydrogen atoms replace
the phosphine substituents and the spectator phenyl group. A single
phosphine ligand was considered because of the bulky ligands used
in the experiments and because in fact such mechanisms are
operative for cross-coupling processes.15c A reactant R1 and a
transition state TS1 could indeed be located, but the computed
barrier of 43.3 kcal/mol was too high. The problem seems to be
that bromide is not basic enough to abstract a proton from the
phenyl, even with the assistance of the palladium center.
This particular reaction takes place in the presence of an excess
of carbonate, and basic anions have been shown to replace bromine
along the reaction mechanism in related processes.2c Therefore, we
considered an alternative process where the starting species R2
contains HCO3- instead of Br-. Similar processes with formate or
acetate have been reported in related palladations.16 The computed
structures for reactant R2, transition state TS2, and palladacycle
P2 are shown in Figure 1. Geometrical changes with respect to R1
and TS1 are minor, but the energetics are completely different.
The energy barrier is as low as 23.5 kcal/mol, an acceptable value
for a reaction at 100-135 °C. An additional set of calculations
with three fluorine substituents in the phenyl ring produced species
R3 and TS3, with a lower barrier of 13.2 kcal/mol, thus confirming
the experimental observation that electron-withdrawing substituents
accelerate the reaction. A final set of calculations evaluated the
effect of deuterium substitution for transition state TS2. The
computed values for kH/kD were 4.3 at 100 °C and 3.7 at 135 °C,
again in good agreement with experiment. Similar results have been
obtained from a related intermolecular mechanism, with no previous
coordination of hydrogencarbonate to palladium.13a,17
References
(1) (a) Hassan, J.; Se´vignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem.
ReV. 2002, 102, 1359-1470. (b) Bringmann, G.; Tasler, S.; Pfeifer, R.-
M.; Breuning, M. J. Organomet. Chem. 2002, 661, 49-65. (c) Echavarren,
A. M.; Go´mez-Lor, B.; Gonza´lez, J. J.; de Frutos, OÄ . Synlett 2003, 585-
597.
(2) (a) de Meijere, A.; Diederich, F.; Eds. Metal-Catalyzed Cross-Coupling
Reactions; Wiley: Weinheim, 2004. (b) Espinet, P.; Echavarren, A. M.
Angew. Chem., Int. Ed. 2004, 43, 4704-4734. (c) Braga, A. A. C.;
Morgon, N. H.; Ujaque, G.; Maseras, F. J. Am. Chem. Soc. 2005, 127,
9298-9307.
(3) Recent examples: (a) Torres, J. C.; Pinto, A. C.; Garden, S. J. Tetrahedron
2004, 60, 9889-9900. (b) Campeau, L.-C.; Thansandote, P.; Fagnou, K.
Org. Lett. 2005, 7, 1857-1860. (c) Leblanc, M.; Fagnou, K. Org. Lett.
2005, 7, 2849-2852. (d) Harrowven, D. C.; Woodcock, T.; Howes, P.
D. Angew. Chem., Int. Ed. 2005, 44, 3899-3901.
(4) (a) Campeau, L.-C.; Parisien, M.; Leblanc, M.; Fagnou, K. J. Am. Chem.
Soc. 2004, 126, 9186-9187. (b) Lafrance, M.; Blaquie`re, N.; Fagnou, K.
Chem. Commun. 2004, 2874-2875. (c) Parisien, M.; Valette, D.; Fagnou,
K. J. Org. Chem. 2005, 70, 7578-7584.
(5) (a) Catellani, M.; Motti, E.; Faccini, F.; Ferraccioli, R. Pure Appl. Chem.
2005, 77, 1243-1248 and references therein. (b) Dupont, J.; Consorti, C.
S.; Spencer, J. Chem. ReV. 2005, 105, 2527-2571.
(6) (a) Zhao, J.; Campo, M.; Larock, R. C. Angew. Chem., Int. Ed. 2005, 44,
1873-1875 and references therein. See also: (b) Karig, G.; Moon, M.-
T.; Thasana, N.; Gallagher, T. Org. Lett. 2002, 4, 3115-3118. (c) Campo,
M. A.; Larock, R. C. J. Am. Chem. Soc. 2002, 124, 14326-14327.
(7) Recent work indicates that this process is rather unlikely: Hughes, C. C.;
Trauner, D. Angew. Chem., Int. Ed. 2002, 41, 1569-1572.
(8) Substituent effects on the formation of five-membered ring palladacycles
follows the order X ) MeO > H > NO2: (a) Catellani, M.; Chiusoli, G.
P. J. Organomet. Chem. 1992, 425, 151. (b) Mart´ın-Matute, B.; Mateo,
C.; Ca´rdenas, D. J.; Echavarren, A. M. Chem.-Eur. J. 2001, 7, 2341-
2348.
(9) (a) Lane, B. S.; Sames, D. Org. Lett. 2004, 6, 2897-2900. (b) Lane, B.
S.; Brown, M. A.; Sames, D. J. Am. Chem. Soc. 2005, 127, 8050-8057.
(c) See also: Park, C.-H.; Ryabova, V.; Seregin, I. V.; Sromek, A. W.;
Gevorgyan, V. Org. Lett. 2004, 6, 1159-1162.
(10) A similar intramolecular isotope effect (kH/kD ) 4) was found in the Pd-
catalyzed synthesis of oxindoles via C-H functionalization: Hennessy,
E. J.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 12084-12085.
(11) (a) Gonza´lez, J. J.; Garc´ıa, N.; Go´mez-Lor, B.; Echavarren, A. M. J. Org.
Chem. 1997, 62, 1286-1291. (b) Go´mez-Lor, B.; Echavarren, A. M. Org.
Lett. 2004, 6, 2993-2996.
(12) Mota, A. J.; Dedieu, A.; Bour, C.; Suffert, J. J. Am. Chem. Soc. 2005,
127, 7171-7182.
(13) (a) See Supporting Information. (b) Phenanthrenes 9a, 9b, 9d, and 9e
were also synthesized by Suzuki couplings of 9-bromophenanthrene.
(14) Huang, X.; Anderson, K. W.; Zim, D.; Jiang, L.; Klapars, A.; Buchwald,
S. L. J. Am. Chem. Soc. 2003, 125, 6653-6655.
(15) (a) Sumimoto, M.; Iwane, N.; Takahama, T.; Sakaki, S. J. Am. Chem.
Soc. 2004, 126, 10457-10471. (b) Balcells, D.; Maseras, F.; Keay, B.
A.; Ziegler, T. Organometallics 2004, 23, 2784-2796. (c) Goossen, L.
J.; Koley, D.; Hermann, H. L.; Thiel, W. J. Am. Chem. Soc. 2005, 127,
11102-11114. (d) Kozuch, S.; Amatore, C.; Jutand, A.; Shaik, S.
Organometallics 2005, 24, 2319-2330.
(16) (a) Biswas, B.; Sugimoto, M.; Sakaki, S. Organometallics 2000, 19, 3895-
3908. (b) See also: Davies, D. L.; Donald, S. M. A.; Macgregor, S. A. J.
Am. Chem. Soc. 2005, 127, 13754-13755.
(17) Neither in TS2 nor in TS3 (nor in TS2′ and TS3′, of the intermolecular
pathway) does the phenyl ring present the distribution of Mulliken charges
expected for an electrophilic substitution.
Figure 1. B3LYP optimized structures of species R2, TS2, and P2.
JA056165V
9
J. AM. CHEM. SOC. VOL. 128, NO. 4, 2006 1067