Communications
Machines—A Journey into the Nanoworld, Wiley-VCH, Wein-
Leigh, P. J. Lusby, A. Morelli, S. Parsons, J. K. Y. Wong, Angew.
Chem. 2004, 116, 1238 – 1241; Angew. Chem. Int. Ed. 2004, 43,
1218 – 1221; j) W. W. H. Wong, J. Cookson, E. A. L. Evans,
E. J. L. McInnes, J. Wolowska, J. P. Maher, P. Bishop, P. D.
Beer, Chem. Commun. 2005, 2214 – 2216.
heim, 2003; d) A. H. Flood, R. J. A. Ramirez, W.-Q. Deng, R. P.
Muller, W. A. Goddard, J. F. Stoddart, Aust. J. Chem. 2004, 57,
301 – 322; e) “Synthetic Molecular Machines”: E. R. Kay, D. A.
Leigh, Functional Artificial Receptors (Eds.: T. Schrader, A. D.
Hamilton), Wiley-VCH, Weinheim, 2005, pp. 333 – 406.
[13] For reviews on the synthesis of interlocked structures using
transition-metal connectors, see: a) M. Fujita, Acc. Chem. Res.
1999, 32, 53 – 61; b) K. Kim, Chem. Soc. Rev. 2002, 31, 96 – 107;
c) S. R. Batten, R. Robson, Angew. Chem. 1998, 110, 1558 –
1595; Angew. Chem. Int. Ed. 1998, 37, 1460 – 1494; d) A. J.
Blake, N. R. Champness, P. Hubberstey, W.-S. Li, M. A. With-
ersby, M. Schröder, Coord. Chem. Rev. 1999, 183, 117 – 138;
e) S. J. Loeb, Chem. Commun. 2005, 1511 – 1518.
[5] For example, see: A. Saghatelian, K. M. Guckian, D. A. Thayer,
M. R. Ghadiri, J. Am. Chem. Soc. 2003, 125, 344 – 345.
[6] For example, see: a) A. Credi, M. Montalti, V. Balzani, S. J.
Langford, F. M. Raymo, J. F. Stoddart, New J. Chem. 1998, 22,
1061 – 1065; b) M. Asakawa, S. Iqbal, J. F. Stoddart, N. D. Tinker,
Angew. Chem. 1996, 108, 1054 – 1056; Angew. Chem. Int. Ed.
Engl. 1996, 35, 976 – 978.
[7] For example, see: L. A. Cabell, E. V. Anslyn, Tetrahedron Lett.
1999, 40, 7753 – 7756.
[8] For example, see: R. Ballardini, V. Balzani, A. Credi, M. T.
Gandolfi, S. J. Langford, S. Menzer, L. Prodi, J. F. Stoddart, M.
Venturi, D. J. Williams, Angew. Chem. 1996, 108, 1056 – 1059;
Angew. Chem. Int. Ed. Engl. 1996, 35, 978 – 981.
[9] Intercomponent noncovalent interactions are inherently
strengthened by preorganization within a rotaxane architecture
(see: D. A. Leigh, P. J. Lusby, A. M. Z Slawin, D. B. Walker,
Angew. Chem. 2005, 117, 4633 – 4640; Angew. Chem. Int. Ed.
2005, 44, 4557 – 4564). For example, the benzylic amide macro-
cycle in fumaramide-based molecular shuttles remains held in
place[9a] by four macrocycle–thread amide–amide hydrogen
bonds (bamide = 8.3[9b]) even in neat [D6]DMSO (bDMSO = 8.9[9b]).
a) A. Altieri, G. Bottari, F. Dehez, D. A. Leigh, J. K. Y. Wong, F.
Zerbetto, Angew. Chem. 2003, 115, 2398 – 2402; Angew. Chem.
Int. Ed. 2003, 42, 2296 – 2300; b) C. A. Hunter, Angew. Chem.
2004, 116, 5424 – 5439; Angew. Chem. Int. Ed. 2004, 43, 5310 –
5324.
[10] S. A. Vignon, T. Jarrosson, T. Iijima, H.-R. Tseng, J. K. M.
Sanders, J. F. Stoddart, J. Am. Chem. Soc. 2004, 126, 9884 – 9885.
[11] a) D. J. Cµrdenas, A. Livoreil, J.-P. Sauvage, J. Am. Chem. Soc.
1996, 118, 11980 – 11981; b) A. Livoreil, J.-P. Sauvage, N.
Armaroli, V. Balzani, L. Flamigni, B. Ventura, J. Am. Chem.
Soc. 1997, 119, 12114 – 12124; c) J.-P. Collin, P. Gaviæa, J.-P.
Sauvage, New J. Chem. 1997, 21, 525 – 528; d) N. Armaroli, V.
Balzani, J.-P. Collin, P. Gaviæa, J.-P. Sauvage, B. Ventura, J. Am.
Chem. Soc. 1999, 121, 4397 – 4408; e) L. Raehm, J.-M. Kern, J.-P.
Sauvage, Chem. Eur. J. 1999, 5, 3310 – 3317; f) M. C. JimØnez, C.
Dietrich-Buchecker, J.-P. Sauvage, Angew. Chem. 2000, 112,
3422 – 3425; Angew. Chem. Int. Ed. 2000, 39, 3284 – 3287;
g) M. C. JimØnez-Molero, C. Dietrich-Buchecker, J.-P. Sauvage,
Chem. Eur. J. 2002, 8, 1456 – 1466; h) M. C. JimØnez-Molero, C.
Dietrich-Buchecker, J.-P. Sauvage, Chem. Commun. 2003, 1613 –
1616; i) I. Poleschak, J. -M, Kern, J.-P. Sauvage, Chem. Commun.
2004, 474 – 476; j) P. Mobian, J.-M. Kern, J.-P. Sauvage, Angew.
Chem. 2004, 116, 2446 – 2449; Angew. Chem. Int. Ed. 2004, 43,
2392 – 2395; k) J.-P. Sauvage, Chem. Commun. 2005, 1507 – 1510.
[12] For recent reviews on the synthesis of interlocked molecules
using transition-metal templates, see: a) T. J. Hubin, D. H.
Busch, Coord. Chem. Rev. 2000, 200–202, 5 – 52; b) J.-P. Collin,
C. Dietrich-Buchecker, P. Gaviæa, M. C. JimØnez-Molero, J.-P.
Sauvage, Acc. Chem. Res. 2001, 34, 477 – 487; c) M. J. Blanco,
J. C. Chambron, M. C. JimØnez, J.-P. Sauvage, Top. Stereochem.
2003, 23, 125 – 173; d) S. J. Cantrill, K. S. Chichak, A. J. Peters,
J. F. Stoddart, Acc. Chem. Res. 2005, 38, 1 – 9; see also: e) A. C.
Try, M. M. Harding, D. G. Hamilton, J. K. M. Sanders, Chem.
Commun. 1998, 723 – 724; f) M. E. Padilla-Tosta, O. D. Fox,
M. G. B. Drew, P. D. Beer, Angew. Chem. 2001, 113, 4365 – 4369;
Angew. Chem. Int. Ed. 2001, 40, 4235 – 4239; g) D. A. Leigh, P. J.
Lusby, S. J. Teat, A. J. Wilson, J. K. Y. Wong, Angew. Chem.
2001, 113, 1586 – 1591; Angew. Chem. Int. Ed. 2001, 40, 1538 –
1543; h) C. P. McArdle, S. Van, M. C. Jennings, R. J. Puddephatt,
J. Am. Chem. Soc. 2002, 124, 3959 – 3965; i) L. Hogg, D. A.
[14] a) D. D. Cox, S. J. Benkovic, L. M. Bloom, F. C. Bradley, M. J.
Nelson, L. Que, Jr., D. E. Wallick, J. Am. Chem. Soc. 1988, 110,
2026 – 2032; Complexes of this type of ligand have previously
only been reported in a single tetradentate form; see: b) S. Ito, T.
Okuno, H. Matsushima, T. Tokli, Y. Nishida, J. Chem. Soc.
Dalton Trans. 1996, 4479 – 4484; c) T. Okuno, S. Ohba, Y.
Nishida, Polyhedron 1997, 16, 3765 – 3774; d) T. Kobayashi, T.
Okuno, M. Kunita, S. Ohba, Y. Nishida, Polyhedron 1998, 17,
1553 – 1559; e) N. Niklas, O. Walter, R. Alsfasser, Eur. J. Inorg.
Chem. 2000, 1723 – 1731; f) N. Niklas, S. Wolf, G. Liehr, C. E.
Anson, A. K. Powell, R. Alsfasser, Inorg. Chim. Acta 2001, 314,
126 – 132; g) C. Incarvito, A. L. Rheingold, A. L. Gavrilova, C.
Jin Qin, B. Bosnich, Inorg. Chem. 2001, 40, 4101 – 4108; h) N.
Niklas, F. Hampel, O. Walter, G. Liehr, R. Alsfasser, Eur. J.
Inorg. Chem. 2002, 1839 – 1847; i) A. L. Gavrilova, C. Jin Qin,
R. D. Sommer, A. L. Rheingold, B. Bosnich, J. Am. Chem. Soc.
2002, 124, 1714 – 1722; j) N. Niklas, O. Walter, F. Hampel, R.
Alsfasser, J. Chem. Soc. Dalton Trans. 2002, 3367 – 3373.
[15] H1 = 5-[2-(bis(pyridin-2-ylmethyl)amino)acetyl)amino]iso-
phthalic acid dimethyl ester; H22 = 2-(bis(pyridin-2-ylmethyl)-
amino)-N-[(2,2-diphenyl-ethylcarbamoyl)methyl]acetamide;
H23 = ([2](1,7,14,20-tetraaza-2,6,15,19-tetraoxo-3,5,9,12,16,18,
22,25-tetrabenzocyclohexacosane)-(2-(bis(pyridin-2-ylmethyl)-
amino)-N-[(2,2-diphenylethylcarbamoyl)methyl]acetamide)
rotaxane; H24 = 2,2-diphenylethyl 4-(12-(2-(2-(bis(pyridine-2-
ylmethyl)amino)acetamido)acetamido)dodecylamino-4-oxobu-
tanoate; H25 = ([2](1,7,14,20-tetraaza-2,6,15,19-tetraoxo-3,5,9,
12,16,18,22,25-tetrabenzocyclohexacosane)-(2,2-diphenylethyl
4-(12-(2-(2-(bis(pyridine-2-ylmethyl)amino)acetamido)acet-
amido)dodecylamino-4-oxobutanoate) rotaxane.
[16] X-ray crystal structural data for H1CuCl2, [H1CuCl]2[CuCl4],
H23, H2CdNO3, and H23Cd(NO3)2 were collected at 93 K using a
Rigaku Saturn (MM007 high-flux RA/MoKa radiation, confocal
optic), while those for 1CuCl and H2CuCl were collected at 93 K
using a Mercury (MM007 high-flux RA/MoKa radiation, confocal
optic). All data collections employed narrow frames (0.3–1.08) to
obtain at least a full hemisphere of data. Intensities were
corrected for Lorentz polarization and absorption effects (multi-
ple equivalent reflections). Structures were solved by direct
methods, non-hydrogen atoms were refined anisotropically, with
ꢀ
C H protons refined in riding geometries (SHELXTL) against
F2. In most cases, amide protons were refined isotropically
subject to a distant constraint. The protons on solvate molecules
were not allowed for in the refinement. Data for
H1CuCl2·0.5CH3CN·0.055H2O: C25H25.61Cl2CuN4.5O5.06
,
M =
604.44, crystal size 0.1 0.05 0.01 mm3, trigonal, P3, a =
¯
40.804(2), c = 8.4772(4) , Z = 18, 1calcd = 1.478 Mgmꢀ3
; m =
1.044 mmꢀ1, 91570 collected, 14360 unique (Rint = 0.0825), R =
0.1258 for 12778 observed data [Fo > 4s(Fo)], S = 1.189 for 1037
parameters. Residual electron density extremes were 1.500 and
ꢀ3
ꢀ1.250 e
.
Data
M = 1309.27, crystal size 0.1 0.05
0.03 mm3, monoclinic, P2(1)/n, a = 8.1667(16), b = 30.257(5),
c = 23.377(4) , Z = 4, 1calcd = 1.506 Mgmꢀ3 m = 1.433 mmꢀ1
for
[H1CuCl]2[CuCl4]·0.5H2O:
C48H49Cl6Cu3N8O10.5
,
;
,
82
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2006, 45, 77 –83