Journal of the American Chemical Society
Article
(13) Politis, J. K.; Nemes, J. C. J. Am. Chem. Soc. 2001, 123, 2537.
(14) Heeney, M.; Zhang, W.; Crouch, D. J.; Chabinyc, M. L.;
Gordeyev, S.; Hamilton, R.; Higgins, S. J.; McCulloch, I.; Skabara, P. J.;
Sparrowe, D.; Tierney, S. Chem. Commun. 2007, 5061.
(15) Jahnke, A. A.; Djukic, B.; McCormick, T. M.; Buchaca Domingo,
E.; Hellmann, C.; Lee, Y.; Seferos, D. S. J. Am. Chem. Soc. 2013, 135,
951.
(16) (a) Li, Y.; Vamvounis, G.; Holdcroft, S. Macromolecules 2002,
35, 6900. (b) Koo, B.; Sletten, E. M.; Swager, T. M. Macromolecules
2015, 48, 229.
(17) (a) Li, L.; Counts, K. E.; Kurosawa, S.; Teja, A. S.; Collard, D.
M. Adv. Mater. 2004, 16, 180. (b) Li, L.; Collard, D. M. Macromolecules
2005, 38, 372. (c) Robitaille, L.; Leclerc, M. Macromolecules 1994, 27,
1847. (d) Hong, X. Y.; Tyson, J. C.; Middlecoff, J. S.; Collard, D. M.
Macromolecules 1999, 32, 4232.
(18) (a) Babudri, F.; Farinola, G. M.; Naso, F.; Ragni, R. Chem.
Commun. 2007, 1003. (b) Losurdo, M.; Giangregorio, M. M.;
Capezzuto, P.; Cardone, A.; Martinelli, C.; Farinola, G. M.; Babudri,
F.; Naso, F.; Buechel, M.; Bruno, G. Adv. Mater. 2009, 21, 1115.
(19) (a) Kim, B.-G.; Jeong, E. J.; Chung, J. W.; Seo, S.; Koo, B.; Kim,
J. Nat. Mater. 2013, 12, 659. (b) Gundlach, D. J.; Royer, J. E.; Park, S.
K.; Subramanian, S.; Jurchescu, O. D.; Hamadani, B. H.; Moad, A. J.;
Kline, R. J.; Teague, L. C.; Kirillov, O.; Richter, C. A.; Kushmerick, J.
G.; Richter, L. J.; Parkin, S. R.; Jackson, T. N.; Anthony, J. E. Nat.
Mater. 2008, 7, 216. (c) Crouch, D. J.; Skabara, P. J.; Lohr, J. E.;
McDouall, J. J. W.; Heeney, M.; McCulloch, I.; Sparrowe, D.;
Shkunov, M.; Coles, S. J.; Horton, P. N.; Hursthouse, M. B. Chem.
Mater. 2005, 17, 6567. (d) Subramanian, S.; Park, S. K.; Parkin, S. R.;
Podzorov, V.; Jackson, T. N.; Anthony, J. E. J. Am. Chem. Soc. 2008,
130, 2706.
backbone, which leads to enhanced aggregation in the solid
state. However, this enhanced aggregation does not lead to any
increase in thin-film crystalline order compared to that of the
non-fluorinated polymer, likely as a result of reduced rotational
freedom upon fluorination. Fluorination also results in a
significant increase in charge carrier mobility in transistor
devices, with average mobilities increasing 5-fold upon
fluorination to values around 0.7 cm2/(V s). We believe these
results demonstrate that backbone fluorination of polythio-
phene and its analogues is a useful strategy to optimize the
solid-state packing and performance in a range of optoelec-
tronic devices.
ASSOCIATED CONTENT
* Supporting Information
■
S
Additional figures as mentioned in the text, including GCMS,
monomer and polymer NMR, DFT calculations, UV−vis
spectra of annealed films, and FET plots. The Supporting
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
(20) Serdyuk, O.; Abaev, V.; Butin, A.; Nenajdenko, V. In Fluorine in
Heterocyclic Chemistry, Vol. 1; Nenajdenko, V., Ed.; Springer Interna-
tional Publishing: Berlin, 2014; p 233.
(21) (a) Sakamoto, Y.; Komatsu, S.; Suzuki, T. J. Am. Chem. Soc.
2001, 123, 4643. (b) Osuna, R. M.; Ortiz, R. P.; Ruiz Delgado, M. C.;
■
This work was supported by EPSRC grants EP/G060738/1
and EP/K029843/1, a KAUST Competitive Research grant
under agreement no. CRG-1-2012-THO-015, and the Austral-
ian Research Council (FT100100275, DP130102616). We
thank Dr. Scott E. Watkins (CSIRO Melbourne) for the PESA
measurements. Part of this research was undertaken on the
SAXS/WAXS beamline at the Australian Synchrotron, Victoria,
Australia.
Sakamoto, Y.; Suzuki, T.; Hernan
Chem. B 2005, 109, 20737.
́ ́
dez, V.; Lopez Navarrete, J. T. J. Phys.
(22) El Kassmi, A.; Fache, F.; Lemaire, M. J. Electroanal. Chem. 1994,
373, 241.
(23) Gohier, F.; Frere, P.; Roncali, J. J. Org. Chem. 2013, 78, 1497.
̀
(24) (a) Crouch, D. J.; Sparrowe, D.; Heeney, M.; McCulloch, I.;
Skabara, P. J. Macromol. Chem. Phys. 2010, 211, 2642. (b) Huang, L.;
Yang, D.; Gao, Q.; Liu, Y.; Lu, S.; Zhang, J.; Li, C. Chin. J. Chem. 2013,
31, 1385. (c) Fei, Z. P.; Shahid, M.; Yaacobi-Gross, N.; Rossbauer, S.;
Zhong, H. L.; Watkins, S. E.; Anthopoulos, T. D.; Heeney, M. Chem.
Commun. 2012, 48, 11130. (d) Jo, J. W.; Jung, J. W.; Wang, H.-W.;
Kim, P.; Russell, T. P.; Jo, W. H. Chem. Mater. 2014, 26, 4214.
(25) Heeney, M.; Farrand, L.; Giles, M.; Thompson, M.; Tierney, S.;
Shkunov, M.; Sparrowe, D.; McCulloch, I. U.S. Patent 6676857 B2,
2004.
REFERENCES
■
(1) (a) Mishra, A.; Ma, C. Q.; Bauerle, P. Chem. Rev. 2009, 109,
1141. (b) Osaka, I.; McCullough, R. D. Acc. Chem. Res. 2008, 41, 1202.
(c) Zhang, L.; Colella, N. S.; Cherniawski, B. P.; Mannsfeld, S. C. B.;
Briseno, A. L. ACS Appl. Mater. Interfaces 2014, 6, 5327.
(2) Nielsen, C. B.; McCulloch, I. Prog. Polym. Sci. 2013, 38, 2053.
(3) Dang, M. T.; Hirsch, L.; Wantz, G. Adv. Mater. 2011, 23, 3597.
(4) McCullough, R. Adv. Mater. 1998, 10, 93.
(5) Okamoto, K.; Luscombe, C. K. Polym. Chem. 2011, 2, 2424.
(6) Bannock, J. H.; Krishnadasan, S. H.; Nightingale, A. M.; Yau, C.
P.; Khaw, K.; Burkitt, D.; Halls, J. J. M.; Heeney, M.; de Mello, J. C.
Adv. Funct. Mater. 2013, 23, 2123.
(26) Kirby, N. M.; Mudie, S. T.; Hawley, A. M.; Cookson, D. J.;
Mertens, H. D. T.; Cowieson, N.; Samardzic-Boban, V. J. Appl.
Crystallogr. 2013, 46, 1670.
(27) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Frisch, M. J.;
Trucks, G.; Schlegel, H. B.; Scuseria, G.; Robb, M.; Cheeseman, J.;
Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.; et al. Gaussian
09; Gaussian, Inc.: Wallingford, CT, 2009.
(28) Pham, C. V.; Mark, H. B.; Zimmer, H. Synth. Commun. 1986,
16, 689.
(7) Liu, J.; McCullough, R. D. Macromolecules 2002, 35, 9882.
(8) (a) Sheina, E. E.; Liu, J.; Iovu, M. C.; Laird, D. W.; McCullough,
R. D. Macromolecules 2004, 37, 3526. (b) Yokoyama, A.; Miyakoshi,
R.; Yokozawa, T. Macromolecules 2004, 37, 1169.
(9) (a) Bhatt, M. P.; Magurudeniya, H. D.; Rainbolt, E. A.; Huang,
P.; Dissanayake, D. S.; Biewer, M. C.; Stefan, M. C. J. Nanosci.
Nanotechnol. 2014, 14, 1033. (b) Bryan, Z. J.; McNeil, A. J.
Macromolecules 2013, 46, 8395.
(29) Loewe, R. S.; Khersonsky, S. M.; McCullough, R. D. Adv. Mater.
1999, 11, 250.
(30) Loewe, R. S.; Ewbank, P. C.; Liu, J.; Zhai, L.; McCullough, R. D.
Macromolecules 2001, 34, 4324.
(31) Boyd, S. D.; Jen, A. K. Y.; Luscombe, C. K. Macromolecules
2009, 42, 9387.
(10) (a) McCulloch, I.; Bailey, C.; Giles, M.; Heeney, M.; Love, I.;
Shkunov, M.; Sparrowe, D.; Tierney, S. Chem. Mater. 2005, 17, 1381.
(b) Abdou, M. S. A.; Orfino, F. P.; Son, Y.; Holdcroft, S. J. Am. Chem.
Soc. 1997, 119, 4518.
(32) Ho, V.; Boudouris, B. W.; Segalman, R. A. Macromolecules 2010,
(11) Marrocchi, A.; Lanari, D.; Facchetti, A.; Vaccaro, L. Energy
Environ. Sci. 2012, 5, 8457.
43, 7895.
(12) Guo, X.; Baumgarten, M.; Mullen, K. Prog. Polym. Sci. 2013, 38,
1832.
(33) Boudouris, B. W.; Ho, V.; Jimison, L. H.; Toney, M. F.; Salleo,
A.; Segalman, R. A. Macromolecules 2011, 44, 6653.
̈
M
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX