was taken to dryness. The product was washed with hexanes and
dried to yield a yellow powder. Yield: 95%, 57 mg. X-Ray quality
crystals were obtained after diffusion of hexanes into a CH2Cl2
solution of the complex.
then POV-Ray.24 contain the supplementary crystallographic data
for this paper.
CCDC reference numbers 275394–275397.
For crystallographic data in CIF or other electronic format see
DOI: 10.1039/b508678g
1H NMR (300 MHz, CD2Cl2, 298 K): d 1.39 (s, 18H, para
C(CH3)3), 1.63 (s, 36H, ortho C(CH3)3), 2.52 (s, H2O), 7.41 (d,
2H, 3J(H–H) = 7.7, H1,9), 7.53 (t, 3J(H–H) = 7.7, 2H, H2,8), 7.63
Acknowledgements
3
4
(s, 4H, H13), 8.18 (dd, 2H, J(H–H) = 7.7, J(H–P) = 1.3, H3,7),
ꢀ
8.23 (AAꢂXXꢂ, m, 2H, J = 41.9, H10,10 ). 31P NMR (121.5 MHz,
ꢂ
The CNRS and the Ecole Polytechnique are thanked for support-
ing this work. The use of computational facilities from the IDRIS
institute (University Paris XI, Orsay, France) is also gratefully
acknowledged.
CD2Cl2, 298 K): d 204.9 (d + d, 1J(P–Ag) = 686, 1J(P–Ag) = 596).
13C NMR (75.5 MHz, CD2Cl2, 298 K): d 31.7 (s, para C(CH3)3),
4
35.4 (d, J(C–P) = 3.0, ortho C(CH3)3), 36.1 (s, para C(CH3)3),
39.7 (s, ortho C(CH3)3), 122.2 (s, C9a,9b), 123.8 (m, C1,2,8,9), 125.1 (s,
C13), 125.7 (s, C4,6), 129.2 (d, 1J(P–C) = 15.5, C11), 133.8 (C), 153.4
ꢀ
References
(AXXꢂ, m, J(C–P) = 7.5, C4a,5a), 154.2 (s, C12), 156.3 (s, C14),
ꢀ
169.6 (AXXꢂ, m, J(C–P) = 40.3, C10).
1 K. B. Dillon, F. Mathey and J. F. Nixon, Phosphorus: The Carbon Copy,
Wiley, Chichester, 1998.
2 See, for example: (a) N. Avarvari, P. Le Floch and F. Mathey, J. Am.
Chem. Soc., 1996, 118, 11978; (b) N. Avarvari, P. Le Floch, L. Ricard
and F. Mathey, Organometallics, 1997, 16, 4089; (c) P. Rosa, N.
Me´zailles, L. Ricard, F. Mathey, P. Le Floch and Y. Jean, Angew. Chem.,
Int. Ed., 2001, 40, 1251; (d) N. Me´zailles, P. Rosa, L. Ricard, F. Mathey
and P. Le Floch, Organometallics, 2000, 19, 2942; (e) N. Me´zailles, N.
Avarvari, N. Maigrot, L. Ricard, F. Mathey, P. Le Floch, L. Cataldo,
T. Berclaz and M. Geoffroy, Angew. Chem., Int. Ed., 1999, 38, 3194.
3 A. Moores, F. Goettmann, C. Sanchez and P. Le Floch, Chem.
Commun., 2004, 2842.
4 See, for example: (a) S. Qiao and G. C. Fu, J. Org. Chem., 1998, 63,
4168; K. Tanaka and G. Fu, J. Org. Chem., 2001, 66, 8177; (b) S.
Bellemin-Laponnaz, M. M.-C. Lo, T. H. Peterson, J. M. Allen and
G. C. Fu, Organometallics, 2001, 20, 3453; (c) R. Shintani and G. C.
Fu, Org. Lett., 2002, 4, 3699; (d) R. Shintani and G. Fu, Angew. Chem.,
Int. Ed., 2003, 42, 4082; (e) R. Shintani and G. Fu, J. Am. Chem.
Soc., 2003, 125, 10778; (f) C. Ganter, C. Glinsbo¨ckel and B. Ganter,
Eur. J. Inorg. Chem., 1998, 1163; (g) C. Kaulen, C. Pala, C. Hu and
C. Ganter, Organometallics, 2001, 20, 1614; (h) C. Ganter, L. Brassat,
C. Glinsbo¨ckel and B. Ganter, Organometallics, 1997, 16, 2862; (i) C.
Ganter, L. Brassat and B. Ganter, Tetrahedron: Asymmetry, 1997, 8,
2607; (j) C. Ganter, C. Kaulen and U. Englert, Organometallics, 1999,
18, 5444; (k) C. Ganter, L. Brassat and B. Ganter, Chem. Ber., 1997,
130, 1771; (l) D. Carmichael, F. Mathey, L. Ricard and N. Seeboth,
Chem. Commun., 2002, 2976; (m) D. Carmichael, J. Klankermayer, L.
Ricard and N. Seeboth, Chem. Commun., 2004, 1144; (n) X. Sava,
L. Ricard, F. Mathey and P. Le Floch, Organometallics, 2000, 19,
4899; (o) X. Sava, M. Melaimi, N. Me´zailles, L. Ricard, F. Mathey
and P. Le Floch, New J. Chem., 2002, 26, 1378; (p) M. Melaimi, L.
Ricard, F. Mathey and P. Le Floch, J. Organomet. Chem., 2003, 684,
189.
Synthesis of copper complex 6. [Cu(CH3CN)4][BF4] (34.5 mg,
0.13 mmol) and ligand 3 (100 mg, 0.13 mmol) were dissolved in
CH2Cl2 (7 mL). The 31P NMR spectrum of the crude mixture
shows the formation of a unique product. The volume of the
solution was reduced, hexanes were added which resulted in the
precipitation of a yellow solid. It was filtered, washed with hexanes
then dried. Yield: 95%, 116 mg. X-Ray quality crystals were
obtained after diffusion of hexanes into a CDCl3 solution of the
complex.
1H NMR (300 MHz, CD2Cl2, 298 K): d 1.38 (s, 18H, para
C(CH3)3), 1.61 (s, 36H, ortho C(CH3)3), 7.34 (m, H2,8), 7.50 (m,
2H, H1,9), 7.61 (s, 4H, H13), 8.10 (m, 4H, H3,7,10,10 ). 31P NMR
ꢂ
(121.5 MHz, CD2Cl2, 298 K): d 207.6. 13C NMR (75.5 MHz,
CD2Cl2, 298 K): d 31.3 (s, para C(CH3)3), 34.9 (s, ortho C(CH3)3),
35.6 (s, para C(CH3)3), 39.0 (s, ortho C(CH3)3), 123.1 (s, C9a,9b),
123.3 (s, C1,2,8,9), 123.6 (s, C13), 125.4 (s, C4,6), 129.4 (d, 1J(P–C) =
ꢀ
ꢀ
20, C11), 131.4 (m, J = 26, C3,7), 152.4 (AXXꢂ, m, J(C–P) =
ꢀ
14, C4a,5a), 153.7 (s,C12), 156.2 (s, C14), 163.8 (AXXꢂ, m, J(C–P) =
46, C10).
Computational details
All computations were performed using the Gaussian 03 suite of
programs and gradient corrected density functional theory using
the B3PW91 functional.18,19 All optimizations were carried out
using the 6-31 G(d) basis set for H, C, N, O, P. The basis set
employed for the Cu and Au atoms incorporate the Hay and
Wadt small-core relativistic effective core potential and double-
f valence basis set.20 For complex II, the ONIOM method was
employed with the UFF force field (for methyl groups of the xylyl
substituents).21 Full optimizations were followed by analytical
computation of the Hessian matrix to confirm the nature of the
located minima on the potential energy surface. Minima were
characterized by no imaginary frequency.
5 See, for example: (a) S. Ikeda, F. Ohhata, M. Miyoshi, R. Tanaka, T.
Minami, F. Ozawa and M. Yoshifuji, Angew. Chem., Int. Ed., 2000, 39,
4512; (b) T. Minami, H. Okamoto, S. Ikeda, R. Tanaka, F. Ozawa and
M. Yoshifuji, Angew. Chem., Int. Ed., 2001, 40, 4501; (c) F. Ozawa, S.
Yamamoto, S. Kawagishi, M. Hiraoka, S. Ikeda, T. Minami, S. Ito and
M. Yoshifuji, Chem. Lett., 2001, 972; (d) F. Ozawa, H. Okamoto, S.
Kawagishi, S. Yamamoto, T. Minami and M. Yoshifuji, J. Am. Chem.
Soc., 2002, 124, 10968; (e) H. Murakami, T. Minami and F. Ozawa,
J. Org. Chem., 2004, 69, 4482.
6 A. Jouaiti, M. Geoffroy, G. Terron and G. Bernardinelli, J. Am. Chem.
Soc., 1995, 117, 2251.
7 A. S. Ionkin and W. J. Marshall, Heteroat. Chem., 2002, 13, 662.
8 (a) M. Doux, C. Bouet, N. Me´zailles, L. Ricard and P. Le Floch,
Organometallics, 2002, 21, 2785; (b) M. Doux, N. Me´zailles, M.
Melaimi, L. Ricard and P. Le Floch, Chem. Commun., 2002, 1566;
(c) M. Dochnahl, M. Doux, E. Faillard, L. Ricard and P. Le Floch,
Eur. J. Inorg. Chem., 2005, 125.
9 J. R. Hagadorn, Chem. Commun., 2001, 2144.
10 U. Iserloh, D. P. Curran and S. Kanemasa, Tetrahedron: Asymmetry,
1999, 10, 2417.
Crystallography
Data were collected at 150.0(1) K on a Nonius Kappa CCD
˚
diffractometer using a Mo-Ka (k = 0.71073 A) X-ray source and
a graphite monochromator. All data were measured using phi and
omega scans. Experimental details are given in Tables 1 and 2. The
crystal structure was solved using SIR 9722 and SHELXL-97.23
Molecular drawings were made using ORTEP III for Windows
11 (a) P. Le Floch, A. Marinetti, L. Ricard; and F. Mathey, J. Am. Chem.
Soc., 1990, 112, 2407; (b) P. Le Floch and F. Mathey, Synlett, 1990,
171; (c) A. Marinetti, L. Ricard and F. Mathey, Organometallics,
This journal is
The Royal Society of Chemistry 2006
Dalton Trans., 2006, 594–602 | 601
©